Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 321-322: 114024, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35292263

RESUMO

Gastrin and cholecystokinin peptides bind a common G-protein coupled receptor, cholecystokinin receptor B (CCKBR) whilst cholecystokinin receptor A (CCKAR) is preferentially bound by CCK. Gastrin and cholecystokinin mediate signalling from the gastrointestinal tract to regulate appetite and digestive function. In this study, expression of the cholecystokinin/gastrin family and distribution of their receptors expression was measured to understand the target organs for the peptides and how expression responds to changes in food intake. We confirmed the restricted expression of gastrin in the antrum and the abundant expression of cholecystokinin in the hypothalamus. The expression of gastrin in the antrum was significantly elevated in broiler breeders when released from feed restriction. CCKBR was most abundant in the hypothalamus and proventriculus. CCKAR was most abundant in the pancreas and crop, more than tenfold greater than the gastrointestinal tract. Cholecystokinin expression in the pancreas increased after removal of food restriction. CCKAR in the gastrointestinal tract peaks around the distal ileum, distal to the peak of cholecystokinin expression. There was virtually no cholecystokinin expression in the caecum but CCKAR expression was high. The CCKAR expression in the crop was unexpected, supporting a role of cholecystokinin in mediating crop emptying which was supported by the observation of in-vitro contraction after cholecystokinin administration. The response to changes in food intake and the expression pattern of the cholecystokinin/gastrin family and their receptors will stimulate and inform new hypotheses on their role in growth in poultry.


Assuntos
Colecistocinina , Receptores da Colecistocinina , Animais , Galinhas/metabolismo , Gastrinas/metabolismo , Receptor de Colecistocinina B/genética , Receptores da Colecistocinina/genética , Receptores da Colecistocinina/metabolismo
2.
Data Brief ; 6: 1-3, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26759819

RESUMO

Leptin receptor (LEPR) belongs to the class I cytokine receptor superfamily which share common structural features and signal transduction pathways. Although multiple LEPR isoforms, which are derived from one gene, were identified in mammals, they were rarely found in avian except the long LEPR. Four alternative splicing variants of quail LEPR (qLEPR) had been cloned and sequenced for the first time (Wang et al., 2015 [1]). To define patterns of the four splicing variants (qLEPRl, qLEPR-a, qLEPR-b and qLEPR-c) and locate the conserved regions of qLEPRl, this data article provides nucleotide sequence alignment of qLEPR and amino acid sequence alignment of representative vertebrate LEPR. The detailed analysis was shown in [1].

3.
Gen Comp Endocrinol ; 225: 1-12, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26342967

RESUMO

Leptin is an important endocrine regulation factor of food intake and energy homeostasis in mammals; however, the existence of a poultry leptin gene (LEP) is still debated. Here, for the first time, we report the cloning of a partial exon 3 sequence of LEP (qLEP) and four different leptin receptor splicing variants, including a long receptor (qLEPRl) and three soluble receptors (qLEPR-a, qLEPR-b and qLEPR-c) in Japanese quail (Coturnix japonica). The qLEP gene had high GC content (64%), which is similar to other reported avian leptin genes. The encoded qLEP protein possessed the conserved pair of cysteine residues that are required to form a lasso knot for full biological activity, but shared relatively low identities with LEPs of other vertebrates. The translated qLEPRl protein contained 1143 amino acids and shared high amino acid sequence identity with a chicken homolog (89% identity). qLEPRl also contained all the motifs, domains, and basic tyrosine residues that are conserved in the LEPRl proteins of other vertebrates. qRT-PCR analysis showed that LEP and the four LEPR variants were expressed extensively in all tissues examined; the expression levels of LEP were relatively high in hypothalamus, skeletal muscle, and pancreas, while the expression levels of the LEPRs were highest in the pituitary. Compared with the expression levels of juvenile qLEP and total qLEPR (including all LEPR variants), the expression levels of mature qLEP and total qLEPR were up-regulated in the hypothalamus and pituitary, and down-regulated in the ovary. The expressions of LEP/LEPR increased when fasting and decreased when refeeding in the brain and peripheral tissues of juvenile quail, which suggested that the LEP/LEPR system modulated food intake and energy expenditure, although, unlike in mammals, LEP may actually act to inhibit food intake during fasting, at least in juvenile quail. The results indicate that qLEP and qLEPR have unique expression patterns and that the encoded proteins play important roles in the regulation of reproduction and energy status in Japanese quail.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Ovário/metabolismo , Hipófise/metabolismo , Receptores para Leptina/metabolismo , Fatores Etários , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Clonagem Molecular , Coturnix/metabolismo , Ingestão de Alimentos/genética , Éxons , Feminino , Leptina/genética , Receptores para Leptina/genética
4.
BMC Genomics ; 16: 763, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26452545

RESUMO

BACKGROUND: Liver is an important metabolic organ that plays a critical role in lipid synthesis, degradation, and transport; however, the molecular regulatory mechanisms of lipid metabolism remain unclear in chicken. In this study, RNA-Seq technology was used to investigate differences in expression profiles of hepatic lipid metabolism-related genes and associated pathways between juvenile and laying hens. The study aimed to broaden the understanding of liver lipid metabolism in chicken, and thereby to help improve laying performance in the poultry industry. RESULTS: RNA-Seq analysis was carried out on total RNA harvested from the liver of juvenile (n = 3) and laying (n = 3) hens. Compared with juvenile hens, 2567 differentially expressed genes (1082 up-regulated and 1485 down-regulated) with P ≤ 0.05 were obtained in laying hens, and 960 of these genes were significantly differentially expressed (SDE) at a false discovery rate (FDR) of ≤0.05 and fold-change ≥2 or ≤0.5. In addition, most of the 198 SDE novel genes (91 up-regulated and 107 down-regulated) were discovered highly expressed, and 332 SDE isoforms were identified. Gene ontology (GO) enrichment and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that the SDE genes were most enrichment in steroid biosynthesis, PPAR signaling pathway, biosynthesis of unsaturated fatty acids, glycerophospholipid metabolism, three amino acid pathways, and pyruvate metabolism (P ≤ 0.05). The top significantly enriched GO terms among the SDE genes included lipid biosynthesis, cholesterol and sterol metabolic, and oxidation reduction, indicating that principal lipogenesis occurred in the liver of laying hens. CONCLUSIONS: This study suggests that the majority of changes at the transcriptome level in laying hen liver were closely related to fat metabolism. Some of the SDE uncharacterized novel genes and alternative splicing isoforms that were detected might also take part in lipid metabolism, although this needs further investigation. This study provides valuable information about the expression profiles of mRNAs from chicken liver, and in-depth functional investigations of these mRNAs could provide new insights into the molecular networks of lipid metabolism in chicken liver.


Assuntos
Galinhas/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Transcriptoma/genética , Animais , Galinhas/crescimento & desenvolvimento , Colesterol/genética , Colesterol/metabolismo , Ovos , Feminino , Perfilação da Expressão Gênica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...