Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 91: 102983, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926035

RESUMO

Positron emission tomography (PET) scans can reveal abnormal metabolic activities of cells and provide favorable information for clinical patient diagnosis. Generally, standard-dose PET (SPET) images contain more diagnostic information than low-dose PET (LPET) images but higher-dose scans can also bring higher potential radiation risks. To reduce the radiation risk while acquiring high-quality PET images, in this paper, we propose a 3D multi-modality edge-aware Transformer-GAN for high-quality SPET reconstruction using the corresponding LPET images and T1 acquisitions from magnetic resonance imaging (T1-MRI). Specifically, to fully excavate the metabolic distributions in LPET and anatomical structural information in T1-MRI, we first use two separate CNN-based encoders to extract local spatial features from the two modalities, respectively, and design a multimodal feature integration module to effectively integrate the two kinds of features given the diverse contributions of features at different locations. Then, as CNNs can describe local spatial information well but have difficulty in modeling long-range dependencies in images, we further apply a Transformer-based encoder to extract global semantic information in the input images and use a CNN decoder to transform the encoded features into SPET images. Finally, a patch-based discriminator is applied to ensure the similarity of patch-wise data distribution between the reconstructed and real images. Considering the importance of edge information in anatomical structures for clinical disease diagnosis, besides voxel-level estimation error and adversarial loss, we also introduce an edge-aware loss to retain more edge detail information in the reconstructed SPET images. Experiments on the phantom dataset and clinical dataset validate that our proposed method can effectively reconstruct high-quality SPET images and outperform current state-of-the-art methods in terms of qualitative and quantitative metrics.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Benchmarking , Processamento de Imagem Assistida por Computador/métodos
2.
Med Image Anal ; 89: 102902, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482033

RESUMO

Radiotherapy is a mainstay treatment for cancer in clinic. An excellent radiotherapy treatment plan is always based on a high-quality dose distribution map which is produced by repeated manual trial-and-errors of experienced experts. To accelerate the radiotherapy planning process, many automatic dose distribution prediction methods have been proposed recently and achieved considerable fruits. Nevertheless, these methods require certain auxiliary inputs besides CT images, such as segmentation masks of the tumor and organs at risk (OARs), which limits their prediction efficiency and application potential. To address this issue, we design a novel approach named as TransDose for dose distribution prediction that treats CT images as the unique input in this paper. Specifically, instead of inputting the segmentation masks to provide the prior anatomical information, we utilize a super-pixel-based graph convolutional network (GCN) to extract category-specific features, thereby compensating the network for the necessary anatomical knowledge. Besides, considering the strong continuous dependency between adjacent CT slices as well as adjacent dose maps, we embed the Transformer into the backbone, and make use of its superior ability of long-range sequence modeling to endow input features with inter-slice continuity message. To our knowledge, this is the first network that specially designed for the task of dose prediction from only CT images without ignoring necessary anatomical structure. Finally, we evaluate our model on two real datasets, and extensive experiments demonstrate the generalizability and advantages of our method.


Assuntos
Neoplasias , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
3.
Front Oncol ; 12: 875661, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924164

RESUMO

Purpose: Current deep learning methods for dose prediction require manual delineations of planning target volume (PTV) and organs at risk (OARs) besides the original CT images. Perceiving the time cost of manual contour delineation, we expect to explore the feasibility of accelerating the radiotherapy planning by leveraging only the CT images to produce high-quality dose distribution maps while generating the contour information automatically. Materials and Methods: We developed a generative adversarial network (GAN) with multi-task learning (MTL) strategy to produce accurate dose distribution maps without manually delineated contours. To balance the relative importance of each task (i.e., the primary dose prediction task and the auxiliary tumor segmentation task), a multi-task loss function was employed. Our model was trained, validated and evaluated on a cohort of 130 rectal cancer patients. Results: Experimental results manifest the feasibility and improvements of our contour-free method. Compared to other mainstream methods (i.e., U-net, DeepLabV3+, DoseNet, and GAN), the proposed method produces the leading performance with statistically significant improvements by achieving the highest HI of 1.023 (3.27E-5) and the lowest prediction error with ΔD95 of 0.125 (0.035) and ΔDmean of 0.023 (4.19E-4), respectively. The DVH differences between the predicted dose and the ideal dose are subtle and the errors in the difference maps are minimal. In addition, we conducted the ablation study to validate the effectiveness of each module. Furthermore, the results of attention maps also prove that our CT-only prediction model is capable of paying attention to both the target tumor (i.e., high dose distribution area) and the surrounding healthy tissues (i.e., low dose distribution areas). Conclusion: The proposed CT-only dose prediction framework is capable of producing acceptable dose maps and reducing the time and labor for manual delineation, thus having great clinical potential in providing accurate and accelerated radiotherapy. Code is available at https://github.com/joegit-code/DoseWithCT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...