Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-469172

RESUMO

The COVID-19 disease caused by infection with SARS-CoV-2 and its variants is devastating to the global public health and economy. To date, over a hundred COVID-19 vaccines are known to be under development and the few that have been approved to fight the disease are using the spike protein as the primary target antigen. Although virus neutralizing epitopes are mainly located within the RBD of the spike protein, the presence of T cell epitopes, particularly the CTL epitopes that are likely to be needed for killing infected cells, has received comparatively little attention. In this study, we predicted several potential T cell epitopes with web-based analytic tools, and narrowed them down from several potential MHC-I and MHC-II epitopes by ELIspot and cytolytic assays to a conserved MHC-I epitope. The epitope is highly conserved in current viral variants including the most recent Omicron and compatible with presentation by most HLA alleles worldwide. In conclusion, we identified a CTL epitope suitable for evaluating the CD8+ T cell-mediated cellular response and potentially for addition into future COVID-19 vaccine candidates to maximize CTL responses against SARS-CoV-2.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-456164

RESUMO

COVID-19 caused by SARS-CoV-2 has been spreading worldwide. To date, several vaccine candidates moved into EUA or CA applications. Although DNA vaccine is on phase III clinical trial, it is a promised technology platform with many advantages. Here, we showed that the pGX9501 DNA vaccine encoded the spike full-length protein-induced strong humoral and cellular immune responses in mice with higher neutralizing antibodies, blocking the hACE2-RBD binding against live virus infection in vitro. Importantly, higher levels of IFN-{gamma} expression in CD8+ and CD4+ T cell and specific cytotoxic lymphocyte (CTL) killings effect were also observed in the pGX9501-immunized group. It provided subsequent protection against virus challenges in the hACE2 transgenic mouse model. Overall, pGX9501 was a promising DNA vaccine candidate against COVID-19, inducing strong humoral immunity and cellular immunity that contributed to the vaccines protective effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...