Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569907

RESUMO

3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), as the rate-limiting enzyme in the mevalonate pathway, is essential for the biosynthesis of shikonin in Lithospermum erythrorhizon. However, in the absence of sufficient data, the principles of a genome-wide in-depth evolutionary exploration of HMGR family members in plants, as well as key members related to shikonin biosynthesis, remain unidentified. In this study, 124 HMGRs were identified and characterized from 36 representative plants, including L. erythrorhizon. Vascular plants were found to have more HMGR family genes than nonvascular plants. The phylogenetic tree revealed that during lineage and species diversification, the HMGRs evolved independently and intronless LerHMGRs emerged from multi-intron HMGR in land plants. Among them, Pinus tabuliformis and L. erythrorhizon had the most HMGR gene duplications, with 11 LerHMGRs most likely expanded through WGD/segmental and tandem duplications. In seedling roots and M9 cultured cells/hairy roots, where shikonin biosynthesis occurs, LerHMGR1 and LerHMGR2 were expressed significantly more than other genes. The enzymatic activities of LerHMGR1 and LerHMGR2 further supported their roles in catalyzing the conversion of HMG-CoA to mevalonate. Our findings provide insight into the molecular evolutionary properties and function of the HMGR family in plants and a basis for the genetic improvement of efficiently produced secondary metabolites in L. erythrorhizon.

2.
Environ Pollut ; 335: 122337, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37562532

RESUMO

Plant roots continuously influence the rhizosphere, which also serves as a recruitment site for microorganisms with desirable functions. The development of genetically engineered (GE) crop varieties has offered unparalleled yield advantages. However, in-depth research on the effects of GE crops on the rhizosphere microbiome is currently insufficient. We used a triple-transgenic soybean cultivar (JD606) that is resistant to insects, glyphosate, and drought, along with its control, ZP661, and JD606 treated with glyphosate (JD606G). Using 16S and ITS rDNA sequencing, their effects on the taxonomy and function of the bacterial and fungal communities in the rhizosphere, surrounding, and bulk soil compartment niches were determined. Alpha diversity demonstrated a strong influence of JD606 and JD606G on bacterial Shannon diversity. Both treatments significantly altered the soil's pH and nitrogen content. Beta diversity identified the soil compartment niche as a key factor with a significant probability of influencing the bacterial and fungal communities associated with soybeans. Further analysis showed that the rhizosphere effect had a considerable impact on bacterial communities in JD606 and JD606G soils but not on fungal communities. Microbacterium, Bradyrhizobium, and Chryseobacterium were found as key rhizobacterial nodes. In addition, the LEfSe analysis identified biomarker taxa with plant-beneficial attributes, demonstrating rhizosphere-driven microbial recruitment. FUNGuild, Bugbase, and FAPROTAX functional predictions showed that ZP661 soils had more plant pathogen-associated microbes, while JD606 and JD606G soils had more stress-tolerance, nitrogen, and carbon cycle-related microbes. Bacterial rhizosphere networks had more intricate topologies than fungal networks. Furthermore, correlation analysis revealed that the bacteria and fungi with higher abundances exhibited varying degrees of positive and negative correlations. Our findings shed new light on the niche partitioning of bacterial and fungal communities in soil. It also indicates that following triple-transgenic soybean cultivation and glyphosate application, plant roots recruit microbes with beneficial taxonomic and functional traits in the rhizosphere.


Assuntos
Glycine max , Microbiota , Rizosfera , Solo/química , Bactérias/genética , Raízes de Plantas/microbiologia , Microbiologia do Solo , Glifosato
3.
Life (Basel) ; 12(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362930

RESUMO

The BAHD acyltransferase family is a unique class of plant proteins that acylates plant metabolites and participates in plant secondary metabolic processes. However, the BAHD members in Lithospermum erythrorhizon remain unknown and uncharacterized. Although the heterologously expressed L. erythrorhizon BAHD family member LeSAT1 in Escherichia coli has been shown to catalyze the conversion of shikonin to acetylshikonin in vitro, its in vivo role remains unknown. In this study, the characterization, evolution, expression patterns, and gene function of LeBAHDs in L. erythrorhizon were explored by bioinformatics and transgenic analysis. We totally identified 73 LeBAHDs in the reference genome of L. erythrorhizon. All LeBAHDs were phylogenetically classified into five clades likely to perform different functions, and were mainly expanded by dispersed and WGD/segmental duplication. The in vivo functional investigation of the key member LeBAHD1/LeSAT1 revealed that overexpression of LeBAHD1 in hairy roots significantly increased the content of acetylshikonin as well as the conversion rate of shikonin to acetylshikonin, whereas the CRISPR/Cas9-based knockout of LeBAHD1 in hairy roots displayed the opposite trend. Our results not only confirm the in vivo function of LeBAHD1/LeSAT1 in the biosynthesis of acetylshikonin, but also provide new insights for the biosynthetic pathway of shikonin and its derivatives.

4.
BMC Genomics ; 23(1): 706, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253723

RESUMO

BACKGROUND: Livestock animals is of great significance in agricultural production. However, the role of specific gene expression, especially alternative splicing in determining phenotype, is not well understood. The livestock research community needs a gene expression and alternative splicing database contributing to livestock genetic improvement. DESCRIPTION: We report the construction of LivestockExp ( https://bioinfo.njau.edu.cn/livestockExp ), a web-based database server for the exploration of gene expression and alternative splicing using 43,710 uniformly processed RNA-seq samples from livestock animals and several relative species across six orders. The database is equipped with basic querying functions and multiple online analysis modules including differential/specific expression analysis, co-expression network analysis, and cross-species gene expression conservation analysis. In addition to the re-analysis of public datasets, users can upload personal datasets to perform co-analysis with public datasets. The database also offers a wide range of visualization tools and diverse links to external databases enabling users to efficiently explore the results and to gain additional insights. CONCLUSION: LivestockExp covers by far the largest number of livestock animal species and RNA-seq samples and provides a valuable data resource and analysis platform for the convenient utilization of public RNA-seq datasets.


Assuntos
Processamento Alternativo , Gado , Animais , Bases de Dados Genéticas , Expressão Gênica , Internet , Gado/genética , RNA-Seq
5.
Comput Struct Biotechnol J ; 20: 3676-3684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891795

RESUMO

The publicly archived RNA-seq data has grown exponentially, while its valuable information has not yet been fully discovered and utilized, such as alternative splicing and its integration with gene expression. This is especially true for fish species which play important roles in ecology, research and the food industry. Furthermore, there is a lack of online platform to analyze users' new data individually and jointly with existing data for the comprehensive analysis of alternative splicing and gene expression. Here, we present FishExp, a web-based data platform covering gene expression and alternative splicing in 26,081 RNA-seq experiments from 44 fishes. It allows users to query the data in a variety of ways, including gene identifier/symbol, functional term, and BLAST alignment. Moreover, users can customize experiments and tools to perform differential/specific expression and alternative splicing analysis, co-expression and cross-species analysis. In addition, functional enrichment is provided to confer biological significance. Notably, users are allowed to submit their own data and perform various analyses using the new data alone or alongside existing data in FishExp. Results of retrieval and analysis can be visualized on the gene-, transcript- and splicing event-level webpage in a highly interactive and intuitive manner. All data in FishExp can be downloaded for more in-depth analysis. The manually curated sample information, uniform data processing and various tools make it efficient for users to gain new insights from these large data sets, facilitating scientific hypothesis generation. FishExp is freely accessible at https://bioinfo.njau.edu.cn/fishExp.

6.
Nucleic Acids Res ; 50(D1): D1046-D1054, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718719

RESUMO

RNA-seq has been widely used in experimental studies and produced a massive amount of data deposited in public databases. New biological insights can be obtained by retrospective analyses of previously published data. However, the barrier to efficiently utilize these data remains high, especially for those who lack bioinformatics skills and computational resources. We present MetazExp (https://bioinfo.njau.edu.cn/metazExp), a database for gene expression and alternative splicing profiles based on 53 615 uniformly processed publicly available RNA-seq samples from 72 metazoan species. The gene expression and alternative splicing profiles can be conveniently queried by gene IDs, symbols, functional terms and sequence similarity. Users can flexibly customize experimental groups to perform differential and specific expression and alternative splicing analyses. A suite of data visualization tools and comprehensive links with external databases allow users to efficiently explore the results and gain insights. In conclusion, MetazExp is a valuable resource for the research community to efficiently utilize the vast public RNA-seq datasets.


Assuntos
Processamento Alternativo/genética , Bases de Dados Genéticas , Software , Transcriptoma/genética , Animais , Expressão Gênica/genética , RNA-Seq , Análise de Sequência de RNA
7.
Environ Sci Pollut Res Int ; 28(42): 60154-60166, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34151402

RESUMO

Genetically engineered (GE) maize has been thoroughly studied regarding its agro-environmental impact; however, its concerns for the soil environment remain. This work was aimed to decode rhizosphere microbe interactions and potential ecological hazards associated with GE maize. Rhizobacterial communities of field grown transgenic insect-resistant 2A5 maize carrying mcry1Ab and mcry2Ab genes were compared with control Z58 using PacBio sequencing platform. Also full-length 16S rDNA gene sequencing was used to verify the partial (V3-V4) sequencing results obtained in 2017. Measures of α-diversity displayed transgenic 2A5 to be significantly lower in species richness at the flowering stage; however, diversity remained undisturbed. ß-diversity was least affected by genetic modifications where similar community profiles were shared by transgenic 2A5 and control Z58. In addition, root exudation patterns were found to drive variations in bacterial assemblages based on developmental stages. For example, genus Massilia successfully colonized the rhizosphere at jointing stage, while Mucilaginobacter showed higher relative abundance in flowering stages of both 2A5 and Z58. These members are known to possess attributes related to plant growth. The impact of dual-transgene insertion on nifH gene abundance was also analyzed where no apparent significant difference in nifH gene copy number was observed. Our results confirmed that full-length 16S rDNA sequencing was sufficient to provide higher taxonomic resolution. Also, results of our 2-year field trials confirmed that there is no significant impact of mcry gene integration on belowground biomasses. Therefore, GE insect-resistant 2A5 maize carrying mcry1Ab and mcry2Ab genes can continue to benefit human populations by increasing crop productivity. In future, further research needs to be catalyzed to analyze the impact of Bt-insertion on microbial community structure across the years for ecosystem sustainability.


Assuntos
Microbiota , Zea mays , Humanos , Plantas Geneticamente Modificadas/genética , Rizosfera , Solo , Microbiologia do Solo , Zea mays/genética
8.
Sci Rep ; 11(1): 10788, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031500

RESUMO

Shikonin and its derivatives are the main components of traditional Chinese medicine, Zicao. The pharmacological potential of shikonin and its derivatives have been extensively studied. Yet, less is known about the microbial assemblages associated with shikonin producing Borage plants. We studied microbial profiles of two Borage species, Echium plantagineum (EP) and Lithospermum erythrorhizon (LE), to identify the dynamics of microbial colonization pattern within three rhizo-compatments and two distinct soil types. Results of α and ß-diversity via PacBio sequencing revealed significantly higher microbial richness and diversity in the natural soil along with a decreasing microbial gradient across rhizosphere to endosphere. Our results displayed genotype and soil type-dependent fine-tuning of microbial profiles. The host plant was found to exert effects on the physical and chemical properties of soil, resulting in reproducibly different micro-biota. Analysis of differentially abundant microbial OTUs displayed Planctomycetes and Bacteroidetes to be specifically enriched in EP and LE rhizosphere while endosphere was mostly prevailed by Cyanobacteria. Network analysis to unfold co-existing microbial species displayed different types of positive and negative interactions within different communities. The data provided here will help to identify microbes associated with different rhizo-compartments of potential host plants. In the future, this might be helpful for manipulating the keystone microbes for ecosystem functioning.


Assuntos
Bactérias/classificação , Borago/crescimento & desenvolvimento , Naftoquinonas/metabolismo , Análise de Sequência de DNA/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Borago/metabolismo , Borago/microbiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
9.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371331

RESUMO

Many insects are capable of developing two types of wings (i.e., wing polyphenism) to adapt to various environments. Though the roles of microRNAs (miRNAs) in regulating animal growth and development have been well studied, their potential roles in modulating wing polyphenism remain largely elusive. To identify wing polyphenism-related miRNAs, we isolated small RNAs from 1st to 5th instar nymphs of long-wing (LW) and short-wing (SW) strains of the brown planthopper (BPH), Nilaparvata lugens. Small RNA libraries were then constructed and sequenced, yielding 158 conserved and 96 novel miRNAs. Among these, 122 miRNAs were differentially expressed between the two BPH strains. Specifically, 47, 2, 27 and 41 miRNAs were more highly expressed in the 1st, 3rd, 4th and 5th instars, respectively, of the LW strain compared with the SW strain. In contrast, 47, 3, 29 and 25 miRNAs were more highly expressed in the 1st, 3rd, 4th and 5th instars, respectively, of the SW strain compared with the LW strain. Next, we predicted the targets of these miRNAs and carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. We found that a number of pathways might be involved in wing form determination, such as the insulin, MAPK, mTOR, FoxO and thyroid hormone signaling pathways and the thyroid hormone synthesis pathway. Thirty and 45 differentially expressed miRNAs targeted genes in the insulin signaling and insect hormone biosynthesis pathways, respectively, which are related to wing dimorphism. Among these miRNAs, Nlu-miR-14-3p, Nlu-miR-9a-5p and Nlu-miR-315-5p, were confirmed to interact with insulin receptors (NlInRs) in dual luciferase reporter assays. These discoveries are helpful for understanding the miRNA-mediated regulatory mechanism of wing polyphenism in BPHs and shed new light on how insects respond to environmental cues through developmental plasticity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hemípteros/genética , Proteínas de Insetos/metabolismo , MicroRNAs/genética , Asas de Animais/anatomia & histologia , Animais , Perfilação da Expressão Gênica , Hemípteros/anatomia & histologia , Hemípteros/crescimento & desenvolvimento , Proteínas de Insetos/genética , Fenótipo , Transdução de Sinais , Transcriptoma , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
10.
Nat Commun ; 9(1): 1276, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636446

RESUMO

Cetaceans (whales, dolphins, and porpoises) are a group of mammals adapted to various aquatic habitats, from oceans to freshwater rivers. We report the sequencing, de novo assembly and analysis of a finless porpoise genome, and the re-sequencing of an additional 48 finless porpoise individuals. We use these data to reconstruct the demographic history of finless porpoises from their origin to the occupation into the Yangtze River. Analyses of selection between marine and freshwater porpoises identify genes associated with renal water homeostasis and urea cycle, such as urea transporter 2 and angiotensin I-converting enzyme 2, which are likely adaptations associated with the difference in osmotic stress between ocean and rivers. Our results strongly suggest that the critically endangered Yangtze finless porpoises are reproductively isolated from other porpoise populations and harbor unique genetic adaptations, supporting that they should be considered a unique incipient species.


Assuntos
Genoma , Metagenômica , Filogenia , Toninhas/genética , Adaptação Biológica , Animais , Evolução Biológica , China , Mapeamento Cromossômico , Toninhas/classificação , Isolamento Reprodutivo , Rios , Água do Mar , Equilíbrio Hidroeletrolítico
11.
Sci Rep ; 7(1): 16013, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167521

RESUMO

DNA methylation is an important epigenetic modification that regulates a wide range of biological processes including immune response. However, information on the epigenetics-mediated immune mechanisms in insects is limited. Therefore, in this study, we examined transcriptomes and DNA methylomes in the fat body and midgut tissues of silkworm, Bombyx mori with or without B. mori cytoplasmic polyhedrosis virus (BmCPV) infection. The transcriptional profile and the genomic DNA methylation patterns in the midgut and fat body were tissue-specific and dynamically altered after BmCPV challenge. KEGG pathway analysis revealed that differentially methylated genes (DMGs) could be involved in pathways of RNA transport, RNA degradation, nucleotide excision repair, DNA replication, etc. 27 genes were shown to have both differential expression and differential methylation in the midgut and fat body of infected larvae, respectively, indicating that the BmCPV infection-induced expression changes of these genes could be mediated by variations in DNA methylation. BS-PCR validated the hypomethylation of G2/M phase-specific E3 ubiquitin-protein ligase-like gene in the BmCPV infected midgut. These results demonstrated that epigenetic regulation may play roles in host-virus interaction in silkworm and would be potential value for further studies on mechanism of BmCPV epithelial-specific infection and epigenetic regulation in the silkworm.


Assuntos
Bombyx/virologia , Metilação de DNA/genética , Epigênese Genética/genética , Reoviridae/genética , Reoviridae/patogenicidade , Animais , Proteínas de Insetos/genética , MicroRNAs
12.
J Insect Physiol ; 98: 117-125, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28041944

RESUMO

Insects undergo metamorphosis, involving an abrupt change in body structure through cell growth and differentiation. Rice stem stripped borer (SSB), Chilo suppressalis, is one of the most destructive rice pests. However, little is known about the regulation mechanism of metamorphosis development in this notorious insect pest. Here, we studied the expression of 22,197 SSB genes at seven time points during pupa development with a customized microarray, identifying 622 differentially expressed genes (DEG) during pupa development. Gene ontology (GO) analysis of these DEGs indicated that the genes related to substance metabolism were highly expressed in the early pupa, which participate in the physiological processes of larval tissue disintegration at these stages. In comparison, highly expressed genes in the late pupal stages were mainly associated with substance biosynthesis, consistent with adult organ formation at these stages. There were 27 solute carrier (SLC) genes that were highly expressed during pupa development. We knocked down SLC22A3 at the prepupal stage, demonstrating that silencing SLC22A3 induced a deficiency in pupa stiffness and pigmentation. The RNAi-treated individuals had white and soft pupa, suggesting that this gene has an essential role in pupal development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Expressão Gênica , Proteínas de Insetos/genética , Metamorfose Biológica , Mariposas/fisiologia , Animais , Proteínas de Insetos/metabolismo , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Pigmentação , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/fisiologia
14.
PLoS One ; 10(4): e0121504, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25856077

RESUMO

BACKGROUND: The metallic green beetle, Anomala corpulenta (Coleoptera: Scarabaeidae: Rutelinae), is a destructive pest in agriculture and horticulture throughout Asia, including China. Olfaction plays a crucial role in the survival and reproduction of A. corpulenta. As a non-model species, A. corpulenta is poorly understood, and information regarding the molecular mechanisms underlying olfaction in A. corpulenta and other scarab species is scant. METHODOLOGY/PRINCIPLE FINDINGS: We assembled separate antennal transcriptome for male and female A. corpulenta using Illumina sequencing technology. The relative abundance of transcripts with gene ontology annotations, including those related to olfaction in males and females was highly similar. Transcripts encoding 15 putative odorant binding proteins, five chemosensory proteins, one sensory neuron membrane protein, 43 odorant receptors, eight gustatory receptors, and five ionotropic receptors were identified. The sequences of all of these chemosensory-related transcripts were confirmed using reverse transcription polymerase chain reaction (RT-PCR), and direct DNA sequencing. The expression patterns of 54 putative chemosensory genes were analyzed using quantitative real time RT-PCR (qRT-PCR). Antenna-specific expression was detected for many of these genes, suggesting that they may have important functions in semiochemical detection. CONCLUSIONS: The identification of a large number of chemosensory proteins provides a major resource for the study of the molecular mechanism of odorant detection in A. corpulenta and its chemical ecology. The genes identified, especially those that were expressed at high levels in the antennae may represent novel molecular targets for the development of population control strategies based on the manipulation of chemoreception-driven behaviors.


Assuntos
Antenas de Artrópodes/metabolismo , Besouros/genética , Proteínas de Insetos/genética , Família Multigênica/genética , Receptores Odorantes/genética , Transcriptoma , Animais , Sequência de Bases , China , Besouros/metabolismo , Feminino , Perfilação da Expressão Gênica , Biblioteca Gênica , Proteínas de Insetos/metabolismo , Funções Verossimilhança , Masculino , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Odorantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
15.
Artigo em Inglês | MEDLINE | ID: mdl-25388589

RESUMO

Insects are one of the most successful animal groups on earth. Some insects, such as the silkworm and honeybee, are beneficial to humans, whereas others are notorious pests of crops. At present, the genomes of 38 insects have been sequenced and made publically available. In addition, the transcriptomes of dozens of insects have been sequenced. As gene data rapidly accumulate, constructing the pathway of molecular interactions becomes increasingly important for entomological research. Here, we developed an improved tool, iPathCons, for knowledge-based construction of pathways from the transcriptomes or the official gene sets of genomes. Considering the high evolution diversity in insects, iPathCons uses a voting system for Kyoto Encyclopedia of Genes and Genomes Orthology assignment. Both stand-alone software and a web server of iPathCons are provided. Using iPathCons, we constructed the pathways of molecular interactions of 52 insects, including 37 genome-sequenced and 15 transcriptome-sequenced ones. These pathways are available in the iPathDB, which provides searches, web server, data downloads, etc. This database will be highly useful for the insect research community. Database URL: http://ento.njau.edu.cn/ipath/


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma de Inseto/genética , Insetos , Software , Transcriptoma/genética , Animais , Insetos/genética , Insetos/metabolismo , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...