Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell Death Discov ; 10(1): 294, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906863

RESUMO

Peripheral vascular disease (PVD) is an emerging public health burden with a high rate of disability and mortality. Gasdermin D (GSDMD) has been reported to exert pyroptosis and play a critical role in the pathophysiology of many cardiovascular diseases. We ought to determine the role of GSDMD in the regulation of perfusion recovery after hindlimb ischemia (HLI). Our study revealed that GSDMD-mediated pyroptosis occurred in HLI. GSDMD deletion aggravated perfusion recovery and angiogenesis in vitro and in vivo. However, how GSDMD regulates angiogenesis after ischemic injury remains unclear. We then found that GSDMD-mediated pyroptosis exerted the angiogenic capacity in macrophages rather than endothelial cells after HLI. GSDMD deletion led to a lower level of CCL11 in mice serum. GSDMD knockdown in macrophages downregulated the expression and decreased the releasing level of CCL11. Furthermore, recombinant CCL11 improved endothelial functions and angiogenesis, which was attenuated by CCL11 antibody. Taken together, these results demonstrate that GSDMD promotes angiogenesis by releasing CCL11, thereby improving blood flow perfusion recovery after hindlimb ischemic injury. Therefore, CCL11 may be a novel target for prevention and treatment of vascular ischemic diseases.

2.
Nat Commun ; 15(1): 1284, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346966

RESUMO

The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protect female hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicit highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protects human ACE2-transgenic female hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.


Assuntos
Nanovacinas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Cricetinae , Humanos , Feminino , Enzima de Conversão de Angiotensina 2 , Vacinação , Imunização , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
mBio ; 15(1): e0285723, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38051116

RESUMO

IMPORTANCE: Bacteria are constantly exchanging DNA, which constitutes horizontal gene transfer. While some of these occurs by a non-specific process called natural transformation, some occurs by a specific mating between a donor and a recipient cell. In specific conjugation, the mating pilus is extended from the donor cell to make contact with the recipient cell, but whether DNA is actually transferred through this pilus or by another mechanism involving the type IV secretion system complex without the pilus has been an open question. Using Escherichia coli, we show that DNA can be transferred through this pilus between a donor and a recipient cell that has not established a tight mating junction, providing a new picture for the role of this pilus.


Assuntos
Escherichia coli , Transferência Genética Horizontal , Escherichia coli/genética , Escherichia coli/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Conjugação Genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Plasmídeos
4.
Microsc Microanal ; 29(6): 2127-2148, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966978

RESUMO

Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons having been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.


Assuntos
Drosophila melanogaster , Neurônios , Animais , Neurônios/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos
5.
Trials ; 24(1): 719, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950290

RESUMO

BACKGROUND: The physiologic and anthropometric characteristics changes associated with obesity may result in the alternation of pharmacologic management. Remimazolam tosylate is a new type of ultra-short-acting benzodiazepine with stable context-sensitive half-time (CSHT) and no lipid accumulation after long-time infusion. Although remimazolam tosylate has potential advantages for the induction and maintenance of anesthesia in obese patients, the appropriate induction dosing scalars among obese patients are unknown. Therefore, we aim to compare the different weight-based scalars for dosing remimazolam tosylate of anesthesia induction among obese patients. METHODS/DESIGN: The study will be performed as a prospective, single-center, double-blind, controlled clinical trial. The study design is a comparison of remimazolam tosylate requirements based on total body weight (TBW) or lean body weight (LBW) to reach a Modified Observer's Assessment of Alertness and Sedation (MOAA/S) score of 0 among obese subjects (BMI ≥ 35 kg/m2). Another twenty normal-weight subjects (18.5 kg/m2 ≤ BMI < 25 kg/m2) will be enrolled as a control group, whose induction dose is scaled based on TBW. The infusion rate of remimazolam tosylate during induction is 12 mg/kg/h in all groups. DISCUSSION: Results of the present study will provide evidence of dose scalar of remimazolam tosylate to guide the clinical practice of anesthesia induction in obese patients. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR220005664. Registered on 9 February 2022, https://www.chictr.org.cn/showproj.aspx?proj=151150 .


Assuntos
Benzodiazepinas , Obesidade , Humanos , Anestesia Geral , Benzodiazepinas/uso terapêutico , Relação Dose-Resposta a Droga , Obesidade/diagnóstico , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Nat Methods ; 20(10): 1537-1543, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723245

RESUMO

Imaging large fields of view while preserving high-resolution structural information remains a challenge in low-dose cryo-electron tomography. Here we present robust tools for montage parallel array cryo-tomography (MPACT) tailored for vitrified specimens. The combination of correlative cryo-fluorescence microscopy, focused-ion-beam milling, substrate micropatterning, and MPACT supports studies that contextually define the three-dimensional architecture of cells. To further extend the flexibility of MPACT, tilt series may be processed in their entirety or as individual tiles suitable for sub-tomogram averaging, enabling efficient data processing and analysis.


Assuntos
Tomografia com Microscopia Eletrônica , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos
7.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37502991

RESUMO

Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.

8.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503001

RESUMO

Flagella are dynamic, ion-powered machines with assembly pathways that are optimized for efficient flagella production. In bacteria, dozens of genes are coordinated at specific times in the cell lifecycle to generate each component of the flagellum. This is the case for Caulobacter crescentus, but little is known about why this species encodes six different flagellin genes. Furthermore, little is known about the benefits multi-flagellin species possess over single flagellin species, if any, or what molecular properties allow for multi-flagellin filaments to assemble. Here we present an in-depth analysis of several single flagellin filaments from C. crescentus, including an extremely well-resolved structure of a bacterial flagellar filament. We highlight key molecular interactions that differ between each bacterial strain and speculate how these interactions may alleviate or impose helical strain on the overall architecture of the filament. We detail conserved residues within the flagellin subunit that allow for the synthesis of multi-flagellin filaments. We further comment on how these molecular differences impact bacterial motility and highlight how no single flagellin filament achieves wild-type levels of motility, suggesting C. crescentus has evolved to produce a filament optimized for motility comprised of six flagellins. Finally, we highlight an ordered arrangement of glycosylation sites on the surface of the filaments and speculate how these sites may protect the ß-hairpin located on the surface exposed domain of the flagellin subunit.

9.
Eur J Pharmacol ; 945: 175621, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36849103

RESUMO

Autophagy is critically involved in myocardial ischemia-reperfusion (I/R). Autophagy inhibition exacerbates myocardial I/R injury. Few effective agents target autophagy to prevent myocardial I/R injury. Effective drugs that promote autophagy in myocardial I/R warrant further investigation. Galangin (Gal) enhances autophagy and alleviates I/R injury. Here we conducted both in vivo and in vitro experiments to observe the changes in autophagy after galangin treatment and investigated the cardioprotective effects of galangin on myocardial I/R. METHODS: After 45-min occlusion of the left anterior descending coronary artery, myocardial I/R was induced by slipknot release. One day before surgery and immediately after surgery, the mice were injected intraperitoneally with the same volume of saline or Gal. The effects of Gal were evaluated using echocardiography, 2,3,5-triphenyltetrazolium chloride staining (TTC staining), western blotting, and transmission electron microscopy. Primary cardiomyocytes and bone marrow-derived macrophages were extracted in vitro to measure the cardioprotective effects of Gal. RESULTS: Compared with the saline-treated group, Gal significantly improved cardiac function and limited infarct enlargement after myocardial I/R. In vivo and in vitro studies demonstrated that Gal treatment promoted autophagy during myocardial I/R. The anti-inflammatory effects of Gal were validated in bone marrow-derived macrophages. These results strongly suggest that Gal treatment can attenuate myocardial I/R injury. CONCLUSION: Our data demonstrated that Gal could improve left ventricular ejection fraction and reduce infarct size after myocardial I/R by promoting autophagy and inhibiting inflammation.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Volume Sistólico , Função Ventricular Esquerda , Miócitos Cardíacos , Autofagia , Infarto
11.
EBioMedicine ; 86: 104341, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36375316

RESUMO

BACKGROUND: The COVID-19 pandemic continues to cause morbidity and mortality worldwide. Most approved COVID-19 vaccines generate a neutralizing antibody response that primarily targets the highly variable receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein. SARS-CoV-2 "variants of concern" have acquired mutations in this domain allowing them to evade vaccine-induced humoral immunity. Recent approaches to improve the breadth of protection beyond SARS-CoV-2 have required the use of mixtures of RBD antigens from different sarbecoviruses. It may therefore be beneficial to develop a vaccine in which the protective immune response targets a more conserved region of the S protein. METHODS: Here we have developed a vaccine based on the conserved S2 subunit of the S protein and optimized the adjuvant and immunization regimen in Syrian hamsters and BALB/c mice. We have characterized the efficacy of the vaccine against SARS-CoV-2 variants and other coronaviruses. FINDINGS: Immunization with S2-based constructs elicited a broadly cross-reactive IgG antibody response that recognized the spike proteins of not only SARS-CoV-2 variants, but also SARS-CoV-1, and the four endemic human coronaviruses. Importantly, immunization reduced virus titers in respiratory tissues in vaccinated animals challenged with SARS-CoV-2 variants B.1.351 (beta), B.1.617.2 (delta), and BA.1 (omicron) as well as a pangolin coronavirus. INTERPRETATION: These results suggest that S2-based constructs can elicit a broadly cross-reactive antibody response resulting in limited virus replication, thus providing a framework for designing vaccines that elicit broad protection against coronaviruses. FUNDING: NIH, Japan Agency for Medical Research and Development, Garry Betty/ V Foundation Chair Fund, and NSF.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2/genética , Vacinas Combinadas , Vacinas contra COVID-19 , Pangolins , Pandemias , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais
12.
Cell Death Dis ; 13(10): 901, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289195

RESUMO

Cardiomyocyte pyroptosis and apoptosis play a vital role in the pathophysiology of several cardiovascular diseases. Our recent study revealed that gasdermin D (GSDMD) can promote myocardial I/R injury via the caspase-11/GSDMD pathway. We also found that GSDMD deletion attenuated myocardial I/R and MI injury by reducing cardiomyocyte apoptosis and pyroptosis. However, how GSDMD mediates cardiomyocyte apoptosis and protects myocardial function remains unclear. Here, we found that doxorubicin (DOX) treatment resulted in increased apoptosis and pyroptosis in cardiomyocytes and that caspase-11/GSDMD could mediate DOX-induced cardiotoxicity (DIC) injury. Interestingly, GSDMD overexpression promoted cardiomyocyte apoptosis, which was attenuated by GSDMD knockdown. Notably, GSDMD overexpression exacerbated DIC injury, impaired cardiac function in vitro and in vivo, and enhanced DOX-induced cardiomyocyte autophagy. Mechanistically, GSDMD regulated the activity of FAM134B, an endoplasmic reticulum autophagy receptor, by pore formation on the endoplasmic reticulum membrane via its N-terminus, thus activating endoplasmic reticulum stress. In turn, FAM134B interacted with autophagic protein LC3, thus inducing cardiac autophagy, promoting cardiomyocyte apoptosis, and aggravating DIC. These results suggest that GSDMD promotes autophagy and induces cardiomyocyte apoptosis by modulating the reaction of FAM134B and LC3, thereby promoting DIC injury. Targeted regulation of GSDMD may be a new target for the prevention and treatment of DIC.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Humanos , Apoptose , Autofagia , Cardiotoxicidade/metabolismo , Caspases/metabolismo , Doxorrubicina/toxicidade , Estresse do Retículo Endoplasmático , Miócitos Cardíacos/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36011459

RESUMO

BACKGROUND: Preoperative anxiety has adverse effects on children and negative impacts on postoperative rehabilitation. Anesthesiologists can accurately identify children with preoperative anxiety, and individualized intervention can effectively improve their psychological state and clinical prognosis. However, a comprehensive summary of the current available evidence has yet to be conducted. Searches were conducted in Medline databases from inception to March 2022. Primary studies that reported preoperative anxiety in children and its attendant effects on postoperative recovery and prognosis were screened and included. Among the 309 publications identified, 12 related studies (n = 3540 patients) met the eligibility criteria. The incidence of preoperative anxiety in children in the included studies ranged from 41.7% to 75.44%. While 16 influencing factors were identified, only 5 factors had a significant impact on preoperative anxiety in children: younger age (n = 8), parental anxiety (n = 7), negative previous hospitalizations (n = 3), less sociableness (n = 2), and surgical setting (n = 1). The current scoping review identified risk factors for preoperative anxiety in children. Healthcare workers should identify and manage preoperatively anxious children. There are still some factors that are controversial, and large-scale clinical studies are needed.


Assuntos
Transtornos de Ansiedade , Ansiedade , Ansiedade/epidemiologia , Ansiedade/etiologia , Criança , Humanos , Período Pós-Operatório , Fatores de Risco
14.
Oxid Med Cell Longev ; 2022: 2555476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770049

RESUMO

Pulmonary hypertension (PH) is caused by chronic hypoxia that induces the migration and proliferation of pulmonary arterial smooth muscle cells (PASMCs), eventually resulting in right heart failure. PH has been related to aberrant autophagy; however, the hidden mechanisms are still unclear. Approximately 40% East Asians, equivalent to 8% of the universal population, carry a mutation in Aldehyde dehydrogenase 2 (ALDH2), which leads to the aggregation of noxious reactive aldehydes and increases the propensity of several diseases. Therefore, we explored the potential aspect of ALDH2 in autophagy associated with PH. In vitro mechanistic studies were conducted in human PASMCs (HPASMCs) after lentiviral ALDH2 knockdown and treatment with platelet-derived growth factor-BB (PDGF-BB). PH was induced in wild-type (WT) and ALDH2-knockout (ALDH2-/-) mice using vascular endothelial growth factor receptor inhibitor SU5416 under hypoxic conditions (HySU). Right ventricular function was assessed using echocardiography and invasive hemodynamic monitoring. Histological and immunohistochemical analyses were performed to evaluate pulmonary vascular remodeling. EdU, transwell, and wound healing assays were used to evaluate HPASMC migration and proliferation, and electron microscopy and immunohistochemical and immunoblot assays were performed to assess autophagy. The findings demonstrated that ALDH2 deficiency exacerbated right ventricular pressure, hypertrophy, fibrosis, and right heart failure resulting from HySU-induced PH. ALDH2-/- mice exhibited increased pulmonary artery muscularization and 4-hydroxynonenal (4-HNE) levels in lung tissues. ALDH2 knockdown increased PDGF-BB-induced PASMC migration and proliferation and 4-HNE accumulation in vitro. Additionally, ALDH2 deficiency increased the number of autophagosomes and autophagic lysosomes together with autophagic flux and ERK1/2-Beclin-1 activity in lung tissues and PASMCs, indicating enhanced autophagy. In conclusion, the study shows that ALDH2 has a protective role against the migration and proliferation of PASMCs and PH, possibly by regulating autophagy through the ERK1/2-Beclin-1 pathway.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Autofagia , Becaplermina , Proteína Beclina-1/metabolismo , Proliferação de Células , Células Cultivadas , Insuficiência Cardíaca/metabolismo , Hipertensão Pulmonar/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Miócitos de Músculo Liso/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
PLoS Pathog ; 18(5): e1010488, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35503780

RESUMO

Transmitted/founder (T/F) HIV-1 envelope proteins (Envs) from infected individuals that developed neutralization breadth are likely to possess inherent features desirable for vaccine immunogen design. To explore this premise, we conducted an immunization study in rhesus macaques (RM) using T/F Env sequences from two human subjects, one of whom developed potent and broad neutralizing antibodies (Z1800M) while the other developed little to no neutralizing antibody responses (R66M) during HIV-1 infection. Using a DNA/MVA/protein immunization protocol, 10 RM were immunized with each T/F Env. Within each T/F Env group, the protein boosts were administered as either monomeric gp120 or stabilized trimeric gp140 protein. All vaccination regimens elicited high titers of antigen-specific IgG, and two animals that received monomeric Z1800M Env gp120 developed autologous neutralizing activity. Using early Env escape variants isolated from subject Z1800M as guides, the serum neutralizing activity of the two immunized RM was found to be dependent on the gp120 V5 region. Interestingly, the exact same residues of V5 were also targeted by a neutralizing monoclonal antibody (nmAb) isolated from the subject Z1800M early in infection. Glycan profiling and computational modeling of the Z1800M Env gp120 immunogen provided further evidence that the V5 loop is exposed in this T/F Env and was a dominant feature that drove neutralizing antibody targeting during infection and immunization. An expanded B cell clonotype was isolated from one of the neutralization-positive RM and nmAbs corresponding to this group demonstrated V5-dependent neutralization similar to both the RM serum and the human Z1800M nmAb. The results demonstrate that neutralizing antibody responses elicited by the Z1800M T/F Env in RM converged with those in the HIV-1 infected human subject, illustrating the potential of using immunogens based on this or other T/F Envs with well-defined immunogenicity as a starting point to drive breadth.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Animais , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV , Infecções por HIV/prevenção & controle , Humanos , Macaca mulatta , Produtos do Gene env do Vírus da Imunodeficiência Humana
16.
Chaos ; 32(3): 033111, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35364844

RESUMO

Over the past few decades, the research of dissipative chaotic systems has yielded many achievements in both theory and application. However, attractors in dissipative systems are easily reconstructed by the attacker, which leads to information security problems. Compared with dissipative systems, conservative ones can effectively avoid these reconstructing attacks due to the absence of attractors. Therefore, conservative systems have advantages in chaos-based applications. Currently, there are still relatively few studies on conservative systems. For this purpose, based on the simplest memristor circuit in this paper, a non-Hamiltonian 3D conservative system without equilibria is proposed. The phase volume conservatism is analyzed by calculating the divergence of the system. Furthermore, a Kolmogorov-type transformation suggests that the Hamiltonian energy is not conservative. The most prominent property in the conservative system is that it exhibits quasi-periodic 3D tori with heterogeneous coexisting and different amplitude rescaling trajectories triggered by initial values. In addition, the results of Spectral Entropy analysis and NIST test show that the system can produce pseudo-random numbers with high randomness. To the best of our knowledge, there is no 3D conservative system with such complex dynamics, especially in a memristive conservative system. Finally, the analog circuit of the system is designed and implemented to test its feasibility as well.

17.
Int Immunopharmacol ; 107: 108658, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35278833

RESUMO

BACKGROUND: During myocardial infarction (MI), the stimulation of the cGAS-STING-IRF3 pathway in infiltrated macrophages can induce the apoptosis of cardiomyocytes and the fibrosis of cardiac fibroblasts, while H-151 is reported as a selective STING inhibitor. We intended to use H-151 to alleviate MI injury. METHODS: Male C57BL/6J mice were subjected to induce MI, while H-151 (750 nmol) were used for treatment. Myocardial function was assessed through echocardiology and cardiac fibrosis was evaluated by Masson's Trichrome-staining. The stimulation of the STING pathway and the aggravation of inflammation was assessed by levels of protein and mRNA. BMDMs were stimulated by dsDNA extracted from the murine heart, while H-151 was used as treatment. After co-culturing adult cardiomyocytes and cardiac fibroblasts with supernatant of BMDMs, the apoptosis of adult cardiomyocytes and the fibrosis of cardiac fibroblasts was assessed. RESULTS: H-151 treatment showed significant function in preserving myocardial function and decreasing cardiac fibrosis 28 days after MI. H-151 treatment showed significant function in inhibiting the cGAS-STING-IRF3 pathway and inflammation, especially type I interferon response. H-151 could alleviate the type I interferon response in BMDMs elicited by cardiac dsDNA, and thus H-151 could attenuate the apoptosis of adult cardiomyocytes and fibrosis of cardiac fibroblasts after co-culturing them with the supernatant of BMDMs. CONCLUSIONS: H-151, a selective inhibitor of the cGAS-STING-IRF3 pathway, can preserve myocardial function and alleviate cardiac fibrosis after MI by inhibiting the type I interferon response in infiltrated macrophages triggered by cardiac dsDNA which increase the apoptosis of adult cardiomyocytes and fibrosis of cardiac fibroblasts.


Assuntos
Interferon Tipo I , Infarto do Miocárdio , Animais , Fibrose , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Nucleotidiltransferases/metabolismo
18.
Front Pharmacol ; 13: 760916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211010

RESUMO

Background and Purpose: There are many benefits of administering dexmedetomidine perioperatively. The pharmacokinetics (PK) and pharmacodynamics (PD) of intravenous, intranasal and oral dexmedetomidine that was administered before anesthesia were compared in this study, and the effects of dexmedetomidine on the surgical field visibility in tympanoplasty was evaluated. Methods: A single-blind, randomized controlled trial was conducted in a university-affiliated hospital where 45 patients who underwent tympanoplasty under general anesthesia were randomly allocated into three groups. Dexmedetomidine was administered by intravenous infusion at 0.8 µg.kg-1 for 10 min, intranasal instillation at a drop rate of 1 µg.kg-1 and oral intake at 4 µg.kg-1 ten minutes before the induction of anesthesia. The PK and PD of dexmedetomidine after a single low dose administration and its effect on the surgical field in tympanoplasty were analysed. Results: A plasma concentration of dexmedetomidine of 220 pg/ml was achieved immediately after intravenous infusion and at 13.2 and 70.3 min for intranasal and oral administration, respectively. Dexmedetomidine decreased the heart rate (HR) and mean arterial pressure (MAP) in all three groups, although these values remained higher in the oral dexmedetomidine group at all eight time points. Intravenous dexmedetomidine provided the best visualization of the surgical field for opening of the tympanic sinus, 30 min after the start of the infusion (p < 0.05). Intranasal dexmedetomidine provided a significantly better visual field than oral dexmedetomidine for the repair of a tympanic membrane perforation using the fascia temporal muscle (p < 0.05). Conclusion: A single low dose of dexmedetomidine administered intravenously or intranasally could decrease HR and MAP, improve surgical field visibility and be appropriate for deliberate hypotension for surgical procedures of 1-2 h in length. Trial registration: Clinicaltrials.gov identifier: NCT03800641.

19.
J Vis Exp ; (175)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34570100

RESUMO

Whole-cell cryo-electron tomography (cryo-ET) is a powerful technology that is used to produce nanometer-level resolution structures of macromolecules present in the cellular context and preserved in a near-native frozen-hydrated state. However, there are challenges associated with culturing and/or adhering cells onto TEM grids in a manner that is suitable for tomography while retaining the cells in their physiological state. Here, a detailed step-by-step protocol is presented on the use of micropatterning to direct and promote eukaryotic cell growth on TEM grids. During micropatterning, cell growth is directed by depositing extra-cellular matrix (ECM) proteins within specified patterns and positions on the foil of the TEM grid while the other areas remain coated with an anti-fouling layer. Flexibility in the choice of surface coating and pattern design makes micropatterning broadly applicable for a wide range of cell types. Micropatterning is useful for studies of structures within individual cells as well as more complex experimental systems such as host-pathogen interactions or differentiated multi-cellular communities. Micropatterning may also be integrated into many downstream whole-cell cryo-ET workflows, including correlative light and electron microscopy (cryo-CLEM) and focused-ion beam milling (cryo-FIB).


Assuntos
Tomografia com Microscopia Eletrônica , Microscopia Crioeletrônica , Congelamento , Células HeLa , Humanos , Microscopia Eletrônica , Fluxo de Trabalho
20.
Commun Biol ; 4(1): 597, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011948

RESUMO

The COVID-19 pandemic continues to wreak havoc as worldwide SARS-CoV-2 infection, hospitalization, and death rates climb unabated. Effective vaccines remain the most promising approach to counter SARS-CoV-2. Yet, while promising results are emerging from COVID-19 vaccine trials, the need for multiple doses and the challenges associated with the widespread distribution and administration of vaccines remain concerns. Here, we engineered the coat protein of the MS2 bacteriophage and generated nanoparticles displaying multiple copies of the SARS-CoV-2 spike (S) protein. The use of these nanoparticles as vaccines generated high neutralizing antibody titers and protected Syrian hamsters from a challenge with SARS-CoV-2 after a single immunization with no infectious virus detected in the lungs. This nanoparticle-based vaccine platform thus provides protection after a single immunization and may be broadly applicable for protecting against SARS-CoV-2 and future pathogens with pandemic potential.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/imunologia , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2 , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunização/métodos , Levivirus/genética , Levivirus/imunologia , Mesocricetus , Microscopia Eletrônica de Transmissão , Modelos Animais , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Nanotecnologia , Pandemias/prevenção & controle , Engenharia de Proteínas , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...