Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795352

RESUMO

Low solubility and tumor-targeted delivery of ginsenosides to avoid off-target cytotoxicity are challenges for clinical trials. In the present study, we report on a methodology for the synthesis of polyethylene glycol (PEG)-ginsenoside conjugates through a hydrolysable ester bond using the hydrophilic polymer polyethylene glycol with the hydrophobic ginsenosides Rh1 and Rh2 to enhance water solubility and passive targeted delivery. The resulting conjugates were characterized by 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectroscopy (FT-IR). 1H NMR revealed that the C-6 and C-3 sugar hydroxyl groups of Rh1 and Rh2 were esterified. The conjugates showed spherical shapes that were monitored by field-emission transmission electron microscopy (FE-TEM), and the average sizes of the particles were 62 ± 5.72 nm and 134 ± 8.75 nm for PEG-Rh1and PEG-Rh2, respectively (measured using a particle size analyzer). Owing to the hydrophilic enhancing properties of PEG, PEG-Rh1 and PEG-Rh2 solubility was greatly enhanced compared to Rh1 and Rh2 alone. The release rates of Rh1 and Rh2 were increased in lower pH conditions (pH 5.0), that for pathophysiological sites as well as for intracellular endosomes and lysosomes, compared to normal-cell pH conditions (pH 7.4). In vitro cytotoxicity assays showed that the PEG-Rh1conjugates had greater anticancer activity in a human non-small cell lung cancer cell line (A549) compared to Rh1 alone, whereas PEG-Rh2 showed lower cytotoxicity in lung cancer cells. On the other hand, both PEG-Rh1 and PEG-Rh2 showed non-cytotoxicity in a nondiseased murine macrophage cell line (RAW 264.7) compared to free Rh1 and Rh2, but PEG-Rh2 exhibited increased efficacy against inflammation by greatly inhibiting nitric oxide production. Thus, the overall conclusion of our study is that PEG conjugation promotes the properties of Rh1 for anticancer and Rh2 for inflammation treatments. Depends on the disease models, they could be potential drug candidates for further studies.


Assuntos
Antineoplásicos Fitogênicos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ginsenosídeos , Neoplasias Pulmonares/tratamento farmacológico , Polietilenoglicóis , Células A549 , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Células RAW 264.7
2.
J Nanosci Nanotechnol ; 19(2): 701-708, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360145

RESUMO

The obesity rate has been increasing worldwide, which is important because obesity has been linked to the development of various metabolic disorders, such as type 2 diabetes, hypertension, cancer, and stroke. Nanomedicine offers a new approach for treating many diseases, including metabolic disorders such as obesity. In this study, we explored the anti-adipogenic effects of spherical gold nanoparticles synthesized with fresh Panax ginseng leaves (P.g AuNPS) in vitro using 3T3-L1 mature adipocytes. Cell viability was assessed by quantitating preadipocyte growth at different time points. Furthermore, to assess the anti-adipogenic effects of P.g AuNPS, intracellular lipid accumulation was investigated in mature adipocytes. To this end, cells were observed under a microscope and OD measurements were taken after Oil Red O staining. In addition, transcriptional gene regulation was examined by performing real time PCR to assess the levels of adipogenic genes such as PPARγ, CEBPα, CEBPß, Jak2, STAT3, FAS, SREBP-1, and ap2. Moreover, protein levels were evaluated by immunoblotting. Altogether, these results confirm that P.g AuNPS exhibit anti-adipogenic effects at a concentration of 100 µg/ml and that these effects are mediated by the downregulation of PPARγ/CEBPα (major transcription factors) signaling in 3T3-L1 mature adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Nanopartículas Metálicas , PPAR gama/genética , Extratos Vegetais/farmacologia , Células 3T3-L1 , Adipogenia/genética , Animais , Diferenciação Celular , Diabetes Mellitus Tipo 2 , Ouro , Camundongos , Panax
3.
J Ginseng Res ; 42(3): 327-333, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29983614

RESUMO

BACKGROUND: Bioactive compounds in plant extracts are able to reduce metal ions to nanoparticles through the process of green synthesis. Panax ginseng is an oriental medicinal herb and an adaptogen which has been historically used to cure various diseases. In addition, the P. ginseng leaves-mediated gold nanoparticles are the value-added novel materials. Its potential as a cosmetic ingredient is still unexplored. The aim of this study was to evaluate the antioxidant, moisture retention and whitening properties of gold nanoparticles (PgAuNPs) in cosmetic applications. METHODS: Cell-free experiments were performed to evaluate PgAuNP's antioxidant and moisture retention properties and inhibition activity on mushroom tyrosinase. Furthermore, in vitro cell cytotoxicity was evaluated using normal human dermal fibroblast and murine B16BL6 melanoma cells (B16) after treatment with increasing concentrations of PgAuNPs for 24 h, 48 h, and 72 h. Finally, in vitro cell assays on B16 cells were performed to evaluate the whitening effect of PgAuNPs through reduction of cellular melanin content and tyrosinase activity. RESULTS: In vitro DPPH radical scavenging assay results revealed that PgAuNPs exhibited antioxidant activity in a dose-dependent manner. PgAuNPs exhibited moisture retention capacity and effectively inhibited mushroom tyrosinase. In addition, 3-(4,5-dimethyl-thiazol-2yl)-2,5-diphenyl tetrazolium bromide results revealed that PgAuNPs were not toxic to human dermal fibroblast and B16 cells; in addition, they significantly reduced melanin content, tyrosinase activity, and mRNA expression of melanogenesis-associated transcription factor and tyrosinase in B16 cells. CONCLUSION: Our study is the first report to provide evidence supporting that P. ginseng leaves-capped gold nanoparticles could be used as multifunctional ingredients in cosmetics.

4.
Int J Nanomedicine ; 12: 709-723, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28260881

RESUMO

There has been a growing interest in the design of environmentally affable and biocompatible nanoparticles among scientists to find novel and safe biomaterials. Panax ginseng Meyer berries have unique phytochemical profile and exhibit beneficial pharmacological activities such as antihyperglycemic, antiobesity, antiaging, and antioxidant properties. A comprehensive study of the biologically active compounds in ginseng berry extract (GBE) and the ability of ginseng berry (GB) as novel material for the biosynthesis of gold nanoparticles (GBAuNPs) and silver nanoparticles (GBAgNPs) was conducted. In addition, the effects of GBAuNPs and GBAgNPs on skin cell lines for further potential biological applications are highlighted. GBAuNPs and GBAgNPs were synthesized using aqueous GBE as a reducing and capping agent. The synthesized nanoparticles were characterized for their size, morphology, and crystallinity. The nanoparticles were evaluated for antioxidant, anti-tyrosinase, antibacterial, and cytotoxicity activities and for morphological changes in human dermal fibroblast and murine melanoma skin cell lines. The phytochemicals contained in GBE effectively reduced and capped gold and silver ions to form GBAuNPs and GBAgNPs. The optimal synthesis conditions (ie, temperature and v/v % of GBE) and kinetics were investigated. Polysaccharides and phenolic compounds present in GBE were suggested to be responsible for stabilization and functionalization of nanoparticles. GBAuNPs and GBAgNPs showed increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals compared to GBE. GBAuNPs and GBAgNPs effectively inhibited mushroom tyrosinase, while GBAgNPs showed antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, GBAuNPs were nontoxic to human dermal fibroblast and murine melanoma cell lines, and GBAgNPs showed cytotoxic effect on murine melanoma cell lines. The current results evidently suggest that GBAgNPs can act as potential agents for antioxidant, anti-tyrosinase, and antibacterial activities. In addition, GBAuNPs can be further developed into mediators in drug delivery and as antioxidant, anti-tyrosinase, and protective skin agents in cosmetic products. Consequently, the study showed the advantages of using nanotechnology and green chemistry to enhance the natural properties of GBs.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Derme/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Nanopartículas Metálicas/administração & dosagem , Panax/química , Extratos Vegetais/farmacologia , Animais , Células Cultivadas , Derme/citologia , Fibroblastos/citologia , Frutas/química , Ouro/química , Humanos , Técnicas In Vitro , Melanoma Experimental/patologia , Nanopartículas Metálicas/química , Camundongos , Nanotecnologia/métodos , Prata/química , Staphylococcus aureus/efeitos dos fármacos
5.
Int J Nanomedicine ; 11: 6621-6634, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28008248

RESUMO

A rapid biological synthesis of multifunctional gold nanoparticle (AuNp) and monodisperse silver nanoparticle (AgNp) was achieved by an aqueous extract of black Panax ginseng Meyer root. The physicochemical transformation into black ginseng (BG) greatly enhanced the pharmacological activities of white ginseng and its minor ginsenoside content. The optimal temperature conditions and kinetics of bioreduction were investigated. Formation of BG-AuNps and BG-AgNps was verified by ultraviolet-visible spectrophotometry at 548 and 412 nm, respectively. The biosynthesized BG-AgNps were spherical and monodisperse with narrow distribution, while BG-AuNps were icosahedral-shaped and moderately polydisperse. Synthesized nanoparticles exhibited long-term stability in buffers of pH 7.0-8.0 and biological media (5% bovine serum albumin) at an ambient temperature and at 37°C. BG-AgNps showed effective antibacterial activity against Escherichia coli and Staphylococcus aureus. BG-AuNps and BG-AgNps demonstrated increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals. In addition, BG-AuNps and BG-AgNps were nontoxic to HaCaT and MCF-7 cells; the latter showed no cytotoxicity at concentrations lower than 10 µg/mL. At higher concentrations, BG-AgNps exhibited apparent apoptotic activity in MCF-7 breast cancer cell line through reactive oxygen species generation and nuclear fragmentation.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Panax/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Prata/química , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bovinos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Células MCF-7 , Extratos Vegetais/química , Espectrofotometria Ultravioleta , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
6.
In Vitro Cell Dev Biol Anim ; 52(3): 287-295, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26714752

RESUMO

Atopic dermatitis (AD) is a chronic skin disease that affects millions of people worldwide. Keratinocytes and macrophages are two cells types that play a pivotal role in the development of AD. These cells produced different chemokines and cytokines, especially thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), as well as nitric oxide (NO) through inducible nitric oxide synthase (iNOS) and COX2 in response to stimulation by TNF-α/IFN-γ and lipopolysaccharide (LPS) respectively. These mediators are thought to be crucial regulators of the pathogenesis of AD. Although several natural compounds to treat AD have been studied, the effect of Rg5:Rk1 from Panax ginseng (P. ginseng) on AD has not yet been investigated. In this study, we evaluated the inhibitory effect of Rg5:Rk1 on TNF-α/IFN-γ stimulated keratinocytes (HaCaT cells) and LPS-stimulated macrophages (RAW 264.7 cells). Enzyme-linked immunosorbent assay (ELISA) data showed that pretreatment of HaCaT cells with Rg5:Rk1 significantly reduced the TNF-α/IFN-γ-induced increase in TARC/CCL17 expression in a dose-dependent manner. In addition, Rg5:Rk1 decreased LPS-mediated nitric oxide (NO) and reactive oxygen species (ROS) production in RAW 264.7 cells. A considerable reduction in messenger RNA (mRNA) expression of the aforementioned AD mediators was also observed. Pretreatment with Rg5:Rk1 attenuated the TNF-α/IFN-γ-induced phosphorylation of p38 MAPK, STAT1, and NF-κB/IKKß in HaCaT cells. Together, these findings suggest that ginsenoside Rg5:Rk1 may have a potential anti-AD effect by suppressing NF-κB/p38 MAPK/STAT1 signaling.


Assuntos
Quimiocina CCL17/metabolismo , Ginsenosídeos/farmacologia , Interferon gama/farmacologia , Queratinócitos/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Quimiocina CCL22/metabolismo , Dermatite Atópica/patologia , Regulação para Baixo/efeitos dos fármacos , Humanos , Quinase I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
7.
Phytother Res ; 29(9): 1286-1294, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26059856

RESUMO

Various studies have demonstrated that overexpression of cathepsin K (Cat-K) causes excessive bone loss, which ultimately leads to a variety of bone diseases including osteoporosis. Therefore, inhibition of Cat-K signifies a potential therapeutic target in osteoporosis treatment. Ginsenoside Rg3 is one of the most promising compound of Panax ginseng Meyer (P. ginseng) with numerous biological activities. Thus, in recent study the inhibitory effect of Rg3 isolated from P. ginseng was investigated in order to impede the osteoclast activity by an in silico approach followed by in vitro study validation using RAW264.7 cells through the investigation of different biological activity prediction such as absorption distribution metabolism and excretion (ADMET) properties against Cat-K protein. The docking results of our study showed that Rg3 is a non-toxic compound and may act as a drug-like molecule. Additionally, the molecular interaction of Rg3 with the active residues of Cat-K markedly describes its inhibitory effects on osteoclastogenesis. Findings of the present study exhibited that Rg3 significantly reduced receptor activator of nuclear factor kappa B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity, pit formation (actin rings), and TRAP-positive multinucleated cells development in RAW264.7 cells. Furthermore, Rg3 dose-dependently reduced the mRNA expression levels of osteoclast-specific markers such as RANK, TRAP, and Cat-K induced by RANKL through the down regulation of p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) pathways. In conclusion, in silico docking study and in vitro validation together suggested that Rg3 inhibits osteoclastogenesis and reduces bone resorption through the inhibition of Cat-K. Therefore, Rg3 might be a useful therapeutic agent for the treatment of osteoporosis and proper bone formation. Copyright © 2015 John Wiley & Sons, Ltd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...