Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38068225

RESUMO

The development of energy storage systems (ESS) has become an important area of research due to the need to replace the use of fossil fuels with clean energy. Redox flow batteries (RFBs) provide interesting features, such as the ability to separate the power and battery capacity. This is because the electrolyte tank is located outside the electrochemical cell. Consequently, it is possible to design each battery according to different needs. In this context, zinc-bromine flow batteries (ZBFBs) have shown suitable properties such as raw material availability and low battery cost. To avoid the corrosion and toxicity caused by the free bromine (Br2) generated during the charging process, it is necessary to use bromine complexing agents (BCAs) capable of creating complexes. As an overview, the different BCAs used have been listed to compare their behavior when used in electrolytes in ZBFBs. In addition, the coulombic and energy efficiencies obtained have been compared.

2.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502193

RESUMO

Redox flow batteries (RFB) are one of the most interesting technologies in the field of energy storage, since they allow the decoupling of power and capacity. Zinc-bromine flow batteries (ZBFB) are a type of hybrid RFB, as the capacity depends on the effective area of the negative electrode (anode), on which metallic zinc is deposited during the charging process. Gaseous bromine is generated at the positive electrode (cathode) during the charging process, so the use of bromine complexing agents (BCA) is very important. These BCAs are quaternary amines capable of complexation with bromine and generating an organic phase, immiscible with the aqueous electrolyte. One of the most commonly used BCAs in RFB technology is 4-methylethylmorpholinium bromide (MEM-Br). In this work, an alternative quaternary amine 4-methylpropylmorpholinium bromide (MPM-Br) was studied. MPM-Br was integrated into the electrolyte, and 200 charge-discharge cycles were performed on the resulting ZBFBs. The obtained results were compared with those when MEM-Br was used, and it was observed that the electrolyte with MPM-Br displays a higher resistance in voltage and higher energy efficiency, making it a promising alternative to MEM-Br.


Assuntos
Brometos/química , Fontes de Energia Elétrica , Eletrodos , Hidrocarbonetos Bromados/química , Zinco/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...