Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014608

RESUMO

Chromium pollution represents a worldwide concern due to its high toxicity and bioaccumulation in organisms and ecosystems. An interesting material to remove metal ions from water is a whey-protein-based material elaborated by electrospinning, which is an emerging method to produce adsorbent membranes with diverse applications. The aim of this study was to prepare an adsorbent membrane of whey protein isolate (WPI) and polycaprolactone (PCL) by electrospinning to remove chromium ions from water. The adsorbent membrane was synthesized by a central composed design denaturing WPI using 2-Mercaptoethanol and mixing it with PCL to produce electrospun nanofibers. The adsorbent membrane was characterized by denaturation, Scanning Electron Microscope, Fourier-Transform Infrared Spectroscopy, Contact Angle, Thermogravimetric Analysis, and X-ray Photoelectron Spectrometry. The adsorption properties of this membrane were assessed in the removal of chromium. The removal performance of the membrane was enhanced by an increase in temperature showing an endothermic adsorption process. The adsorption process of chromium ions onto the nanofiber membrane followed the Sips adsorption isotherm, while the adsorption kinetics followed a pseudo-second kinetics where the maximum adsorption capacity was 31.0 mg/g at 30 °C and pH 2. This work provides a novel method to fabricate a hybrid membrane with amyloid-type fibrils of WPI and PCL, which is a promising adsorbent to remove heavy metal ions from water.

2.
Biotechnol Rep (Amst) ; 31: e00659, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34367924

RESUMO

Immobilization is practical to upgrade enzymes, increasing their performance and expanding their applications. The recombinant, solvent tolerant lipase LipA PSA01 from Pseudomonas aeruginosa was immobilized on polypropylene Accurel® MP1004 to improve its performance. We investigated the effect of ethanol as an additive during the immobilization process at three concentrations (20%, 25%, and 30%) on the operational behavior of the enzyme. The immobilization efficiency was higher than 92%, and the immobilized enzymes showed hyperactivation and thermal resistance depending on the concentration of ethanol. For example, at 70 °C, the free enzyme lost the activity, while the prepared one with ethanol 25% conserved a residual activity of up to 73.3% (∆ T15 50 = 27.1 °C). LipA immobilized had an optimal pH value lower than that of the free enzyme, and the organic solvent tolerance of the immobilized enzymes depended on the ethanol used. Hence, the immobilized enzyme with ethanol 25% showed hyperactivation to more solvents than the soluble enzyme. Remarkable stability towards methanol (up to 8 folds) was evidenced in all the immobilized preparations. The immobilized enzyme changed their chemo preference, and it hydrolyzed oils preferentially with short-chain than those with long-chain. LipA had a notable shelf-life after one year, keeping its activity up to 87%. Ethanol facilitated the access of the enzyme to the hydrophobic support and increased its activity and stability according to the amount of ethanol added.

3.
Membranes (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266234

RESUMO

Water contamination by mercury and chromium has a direct effect in human health. A promising technology to remove heavy metals by membrane filtration is the use of hybrid membranes produced with whey protein fibrils (WPF) and activated carbon (AC). In this study, the best conditions to produce WPF by heat treatment were determined to maximize the removal of mercury and chromium from water using a central composed design. The results indicated that the best conditions to prepare WPF were 74 °C, 7 h and 3.8% of whey protein with adsorption capacities of 25 and 18 mg/g and removal efficiencies of 81 and 57% for mercury and chromium, respectively. WPF and AC were used to prepare a hybrid membrane that was characterized using transmission electron microscopy, atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area measurements. Batch filtration experiments were performed with the hybrid membrane for chromium and mercury removal at 25, 50 and 100 mg/L to determine its adsorption capacities. A high performance of the hybrid membrane was demonstrated removing efficiently mercury and chromium from water, thus supporting more than ten filtration cycles.

4.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486240

RESUMO

This study aimed to express heterologously the lipase LipA from Pseudomonas aeruginosa PSA01 obtained from palm fruit residues. In previous approaches, LipA was expressed in Escherichia coli fused with its signal peptide and without its disulfide bond, displaying low activity. We cloned the mature LipA with its truncated chaperone Lif in a dual plasmid and overexpressed the enzyme in two E. coli strains: the traditional BL21 (DE3) and the SHuffle® strain, engineered to produce stable cytoplasmic disulfide bonds. We evaluated the effect of the disulfide bond on LipA stability using molecular dynamics. We expressed LipA successfully under isopropyl ß-d-1-thio-galactopyranoside (IPTG) and slow autoinducing conditions. The SHuffle LipA showed higher residual activity at 45 °C and a greater hyperactivation after incubation with ethanol than the enzyme produced by E. coli BL21 (DE3). Conversely, the latter was slightly more stable in methanol 50% and 60% (t½: 49.5 min and 9 min) than the SHuffle LipA (t½: 31.5 min and 7.4 min). The molecular dynamics simulations showed that removing the disulfide bond caused some regions of LipA to become less flexible and some others to become more flexible, significantly affecting the closing lid and partially exposing the active site at all times.


Assuntos
Escherichia coli/metabolismo , Lipase/biossíntese , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/metabolismo , Simulação por Computador , Citoplasma/metabolismo , Dissulfetos , Perfilação da Expressão Gênica , Microbiologia Industrial/métodos , Lactose/química , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Phoeniceae/microbiologia , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Conformação Proteica , Domínios Proteicos , Sinais Direcionadores de Proteínas , Solventes/química , Temperatura , Fatores de Tempo
5.
J Food Sci ; 76(9): E569-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22416702

RESUMO

UNLABELLED: Rheology of milk foams generated by steam injection was studied during the transient destabilization process using steady flow and dynamic oscillatory techniques: yield stress (τ(y) ) values were obtained from a stress ramp (0.2 to 25 Pa) and from strain amplitude sweep (0.001 to 3 at 1 Hz of frequency); elastic (G') and viscous (G″) moduli were measured by frequency sweep (0.1 to 10 Hz at 0.05 of strain); and the apparent viscosity (η(a) ) was obtained from the flow curves generated from the stress ramp. The effect of plate roughness and the sweep time on τ(y) was also assessed. Yield stress was found to increase with plate roughness whereas it decreased with the sweep time. The values of yield stress and moduli-G' and G″-increased during foam destabilization as a consequence of the changes in foam properties, especially the gas volume fraction, ϕ, and bubble size, R(32) (Sauter mean bubble radius). Thus, a relationship between τ(y) , ϕ, R(32) , and σ(surface tension) was established. The changes in the apparent viscosity, η, showed that the foams behaved like a shear thinning fluid beyond the yield point, fitting the modified Cross model with the relaxation time parameter (λ) also depending on the gas volume fraction. Overall, it was concluded that the viscoelastic behavior of the foam below the yield point and liquid-like behavior thereafter both vary during destabilization due to changes in the foam characteristics. PRACTICAL APPLICATION: Studying the transient rheology of milk foams during destabilization contributes to our knowledge of the relationships between the changes in foam properties: texture and mouth feel during the consumption of hot foamed beverages.


Assuntos
Manipulação de Alimentos/métodos , Leite/química , Reologia/métodos , Vapor , Animais , Elasticidade , Temperatura Alta , Resistência ao Cisalhamento , Tensão Superficial , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...