Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1060: 114-124, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-30902325

RESUMO

Time weighted average (TWA) concentrations can improve the assessment of water quality. DGT (Diffusive Gradients in Thin films) devices have been suggested as simple tools to measure TWA metal concentrations, but the connection of TWA with cDGT has not been rigorously discussed. It is shown here that cDGT is the average DGT-labile concentration along the deployment, which suggests that it is well suited to correlate with toxicity effects. In terms of real species, cDGT is a good estimator of the TWA concentration for simple metal solutions (no ligands are present) when the accumulation takes place under perfect sink conditions. Differences between cDGT and the TWA concentration for short pulses (<40 min), when the transient regime becomes relevant, are reported. In the presence of complexes, cDGT contains the TWA of the product of the labile fraction times the diffusivity of the complex (relative to that of the free metal). This means that cDGT can underestimate the TWA of the total metal concentration due to the presence of complexes less mobile than the free metal or not fully labile. These findings are illustrated with Cd, Ni, Mg or Ni + nitrilotriacetic acid (NTA) solutions. When only one complex is relevant, as in the Ni + NTA system, a simple correction factor can yield the TWA concentration from cDGT.

2.
Anal Chem ; 89(12): 6567-6574, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28508621

RESUMO

DGT (Diffusion Gradients in Thin films) was designed to sample trace metals in situ at their natural concentrations. The setup and the experimental deployment conditions were established to allow interpretation of a linear accumulation of metal with time, using a simple expression based on a steady-state flux under perfect sink conditions. However, the extension of DGT to a wide range of analytes and its use under varied conditions has shown that, in some situations, these conditions are not fulfilled, so that accumulations with time are nonlinear. Previously, when such curvature was observed, concentrations in solution could not be reliably calculated. Here, we present fundamentally derived equations that reproduce the time accumulation for three situations: (i) kinetic limitations in the binding to the resin, (ii) saturation or equilibrium effects, or (iii) non-negligible competitive effects. We show how the accumulations can be quantified, in terms of the required kinetic and thermodynamic constants, and provide practical guidance for their use to obtain reliable estimates of solution concentrations. Solutions containing Mg or Mn, where all three situations can prevail, are used as examples. Calculated concentrations show reasonable agreement with the experimentally known values and with the results of a numerical model of the system, significantly improving the estimations based on perfect sink conditions. Such an approach opens up the possibility of using DGT more widely in challenging systems and allows DGT data to be interpreted more fully.

3.
Anal Chem ; 88(20): 10245-10251, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27660851

RESUMO

Availability of magnesium is a matter of concern due to its role in many environmental and biological processes. Diffusive Gradients in Thin Films (DGT) devices can measure Mg availability in situ. This work shows that Mg accumulation in water largely increases when ionic strength (I) decreases. This phenomenon can be explained from (i) the increase of both the association equilibrium (K) and rate (ka,R) constants for the reaction between Mg cations and resin sites, and (ii) the growing contribution of the partitioning of Mg cations at the resin-gel interface, as I decreases. Two theoretical models that take into account electrical interactions among Mg cations, background electrolyte, and resin sites can successfully be used to determine ka,R and K at each I. Both models yield similar ka,R values, which fulfill an expression for the kinetic salt effect. For freshwater (with a typical salinity of 10 mM and circumneutral pH), the binding of Mg is so fast and strong that the simplest perfect-sink DGT expression can be helpful to predict (overestimation lower than 5%) the accumulation in solutions with Mg concentrations up to 1 mM whenever the deployment time is below 9 h. Perfect sink conditions can still be applied for longer times, in systems with either a lower I or a lower Mg concentration.

4.
Anal Chim Acta ; 885: 148-55, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26231900

RESUMO

Binding resin beads used in DGT (diffusion gradients in thin films) tend to settle to one side of the resin during casting. This phenomenon might be relevant for metal accumulation when partially labile complexes dominate the metal speciation, especially after recognizing the important role played by complex dissociation in the resin domain. The influence of the inhomogeneity of the binding agent distribution on metal accumulation is here assessed by numerical simulation of DGT devices with binding beads in only one half of the resin disc, as a reasonable model of the standard resin discs. Results indicate that a decrease in mass accumulation of less than 13% can arise in these inhomogeneous devices (as compared with an ideal disc with homogeneous dispersion of the resin beads) when complexes with stability constant K<10(2)m(3)mol(-1) (K<10(5)Lmol(-1)) dominate the metal speciation. The loss increases as K increases, but the percentage of mass loss always remains lower than the volume fraction of resin disc without beads. For very labile or inert complexes, the impact of the inhomogeneous distribution of binding resin beads is negligible. As kinetic dissociation constants of complexes can be estimated from the distribution of the metal accumulation in a DGT device with a stack of two resin discs, the influence of the inhomogeneity on the recovered kinetic constant is also assessed. For the cases studied, the recovered kinetic dissociation constant, kd,recovered, retains the correct order of magnitude, being related to the true kd by kd≈f(-1)kd,recovered, quite independently of K and kd values, being f the fraction of volume of the resin disc where resin beads are dispersed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...