Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35957270

RESUMO

In this work, we propose a versatile, low-cost, and tunable electronic device to generate realistic electrocardiogram (ECG) waveforms, capable of simulating ECG of patients within a wide range of possibilities. A visual analysis of the clinical ECG register provides the cardiologist with vital physiological information to determine the patient's heart condition. Because of its clinical significance, there is a strong interest in algorithms and medical ECG measuring devices that acquire, preserve, and process ECG recordings with high fidelity. Bearing this in mind, the proposed electronic device is based on four different mathematical models describing macroscopic heartbeat dynamics with ordinary differential equations. Firstly, we produce full 12-lead ECG profiles by implementing a model comprising a network of heterogeneous oscillators. Then, we implement a discretized reaction-diffusion model in our electronic device to reproduce ECG waveforms from various rhythm disorders. Finally, in order to show the versatility and capabilities of our system, we include two additional models, a ring of three coupled oscillators and a model based on a quasiperiodic motion, which can reproduce a wide range of pathological conditions. With this, the proposed device can reproduce around thirty-two cardiac rhythms with the possibility of exploring different parameter values to simulate new arrhythmias with the same hardware. Our system, which is a hybrid analog-digital circuit, generates realistic ECG signals through digital-to-analog converters whose amplitudes and waveforms are controlled through an interactive and friendly graphic interface. Our ECG patient simulator arises as a promising platform for assessing the performance of electrocardiograph equipment and ECG signal processing software in clinical trials. Additionally the produced 12-lead profiles can be tested in patient monitoring systems.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Algoritmos , Arritmias Cardíacas/diagnóstico , Frequência Cardíaca/fisiologia , Humanos , Modelos Teóricos
2.
Entropy (Basel) ; 23(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802131

RESUMO

In the context of smart cities, there is a general benefit from monitoring close encounters among pedestrians. For instance, for the access control to office buildings, subway, commercial malls, etc., where a high amount of users may be present simultaneously, and keeping a strict record on each individual may be challenging. GPS tracking may not be available in many indoor cases; video surveillance may require expensive deployment (mainly due to the high-quality cameras and face recognition algorithms) and can be restrictive in case of low budget applications; RFID systems can be cumbersome and limited in the detection range. This information can later be used in many different scenarios. For instance, in case of earthquakes, fires, and accidents in general, the administration of the buildings can have a clear record of the people inside for victim searching activities. However, in the pandemic derived from the COVID-19 outbreak, a tracking that allows detecting of pedestrians in close range (a few meters) can be particularly useful to control the virus propagation. Hence, we propose a mobile clustering scheme where only a selected number of pedestrians (Cluster Heads) collect the information of the people around them (Cluster Members) in their trajectory inside the area of interest. Hence, a small number of transmissions are made to a control post, effectively limiting the collision probability and increasing the successful registration of people in close contact. Our proposal shows an increased success packet transmission probability and a reduced collision and idle slot probability, effectively improving the performance of the system compared to the case of direct transmissions from each node.

3.
IEEE Trans Nanobioscience ; 17(4): 525-532, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30235141

RESUMO

We present an extended heterogeneous oscillator model of cardiac conduction system for generation of realistic 12 lead ECG waveforms. The model consists of main natural pacemakers represented by modified van der Pol equations, and atrial and ventricular muscles, in which the depolarization and repolarization processes are described by modified FitzHugh-Nagumo equations. We incorporate an artificial RR-tachogram with the specific statistics of a heart rate, the frequency-domain characteristics of heart rate variability produced by Mayer and respiratory sinus arrhythmia waves, normally distributed additive noise and a baseline wander that couple the respiratory frequency. The standard 12 lead ECG is calculated by means of a weighted linear combination of atria and ventricle signals and thus can be fitted to clinical ECG of real subject. The model is capable to simulate accurately realistic ECG characteristics including local pathological phenomena accounting for biophysical properties of the human heart. All these features provide significant advantages over existing nonlinear cardiac models. The proposed model constitutes a useful tool for medical education and for assessment and testing of ECG signal processing software and hardware systems.


Assuntos
Eletrocardiografia/métodos , Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Modelos Cardiovasculares , Processamento de Sinais Assistido por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...