Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 51(Pt 4): 1305-1314, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11491326

RESUMO

Diazotrophic bacteria were isolated, in two different years, from the rhizosphere and rhizoplane of coffee (Coffea arabica L.) plants cultivated in Mexico; they were designated as type DOR and type SAd isolates. They showed characteristics of the family Acetobacteraceae, having some features in common with Gluconacetobacter (formerly Acetobacter) diazotrophicus, the only known N2-fixing species of the acetic acid bacteria, but they differed from this species with regard to several characteristics. Type DOR isolates can be differentiated phenotypically from type SAd isolates. Type DOR isolates and type SAd isolates can both be differentiated from Gluconacetobacter diazotrophicus by their growth features on culture media, their use of amino acids as nitrogen sources and their carbon-source usage. These results, together with the electrophoretic mobility patterns of metabolic enzymes and amplified rDNA restriction analysis, suggested that the type DOR and type SAd isolates represent two novel N2-fixing species. Comparative analysis of the 16S rRNA sequences revealed that strains CFN-Cf55T (type DOR isolate) and CFN-Ca54T (type SAd isolate) were closer to Gluconacetobacter diazotrophicus (both strains had sequence similarities of 98.3%) than to Gluconacetobacter liquefaciens, Gluconacetobacter sacchari (similarities < 98%) or any other acetobacteria. Strain CFN-Cf55T exhibited low levels of DNA-DNA reassociation with type SAd isolates (mean 42%) and strain CFN-Ca54T exhibited mean DNA-DNA reassociation of 39.5% with type DOR isolates. Strains CFN-Cf55T and CFN-Ca54T exhibited very low DNA reassociation levels, 7-21%, with other closely related acetobacterial species. On the basis of these results, two novel N2-fixing species are proposed for the family Acetobacteraceae, Gluconacetobacter johannae sp. nov. (for the type DOR isolates), with strain CFN-Cf55T (= ATCC 700987T = DSM 13595T) as the type strain, and Gluconacetobacter azotocaptans sp. nov. (for the type SAd isolates), with strain CFN-Ca54T (= ATCC 70098ST = DSM 13594T) as the type strain.


Assuntos
Acetobacteraceae/classificação , Acetobacteraceae/isolamento & purificação , Café/microbiologia , Ácido Acético/metabolismo , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Sequência de Bases , DNA Bacteriano/genética , DNA Ribossômico/genética , Genes Bacterianos , México , Dados de Sequência Molecular , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , Especificidade da Espécie , Terminologia como Assunto
2.
Microb Ecol ; 39(1): 49-55, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10790517

RESUMO

The presence of endophytic Acetobacter diazotrophicus was tested for pineapple plants (Ananas comosus [L.] Merr.) grown in the field. Diazotrophic bacteria were isolated from the inner tissues of surface sterilized roots, stems, and leaves of pineapple plants. Phenotypic tests permitted the selection of presumptive nitrogen-fixing A. diazotrophicus isolates. Restriction fragment length polymorphisms (RFLPs) of small subunit (SSU) rDNA using total DNA digested with endonuclease SphI and with endonuclease NcoI, hybridizations of RNA with an A. diazotrophicus large subunit (LSU) rRNA specific probe, as well as patterns in denaturing protein electrophoresis (SDS-PAGE) and multilocus enzyme tests allowed the identification of A. diazotrophicus isolates. High frequencies of isolation were obtained from propagative buds that had not been nitrogen-fertilized, and lower frequencies from 3-month-old plants that had been nitrogen-fertilized. No isolates were recovered from 5- to 7-month-old nitrogen-fertilized plants. All the A. diazotrophicus isolates recovered from pineapple plants belonged to the multilocus genotype which shows the most extensive distribution among all host species previously analyzed.

3.
Appl Environ Microbiol ; 63(9): 3676-83, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9293018

RESUMO

Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N2-fixing isolates had some features in common with the genus Acetobacter but should not be assigned to the species Acetobacter diazotrophicus because they differed from A. diazotrophicus in morphological and biochemical traits and were largely divergent in electrophoretic mobility patterns of metabolic enzymes at coefficients of genetic distance as high as 0.950. In addition, these N2-fixing acetobacteria differed in the small-subunit rRNA restriction fragment length polymorphism patterns obtained with EcoRI, and they exhibited very low DNA-DNA homology levels, ranging from 11 to 15% with the A. diazotrophicus reference strain PAI 5T. Thus, some of the diazotrophic acetobacteria recovered from the rhizosphere of coffee plants may be regarded as N2-fixing species of the genus Acetobacter other than A. diazotrophicus. Endophytic diazotrophic bacteria may be more prevalent than previously thought, and perhaps there are many more potentially beneficial N2-fixing bacteria which can be isolated from other agronomically important crops.


Assuntos
Acetobacter/isolamento & purificação , Café/microbiologia , Acetobacter/genética , Acetobacter/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/genética , DNA Ribossômico/isolamento & purificação , Dados de Sequência Molecular , Fixação de Nitrogênio , Polimorfismo de Fragmento de Restrição , Microbiologia do Solo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...