Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 56, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061547

RESUMO

Development of a malaria vaccine that blocks transmission of different parasite stages to humans and mosquitoes is considered critical for elimination efforts. A vaccine using Pfs25, a protein on the surface of zygotes and ookinetes, is under investigation as a transmission-blocking vaccine (TBV) that would interrupt parasite passage from mosquitoes to humans. The most extensively studied Pfs25 TBVs use Pichia pastoris-produced recombinant forms of Pfs25, chemically conjugated to a recombinant carrier protein, ExoProtein A (EPA). The recombinant form of Pfs25 first used in humans was identified as Pfs25H, which contained a total of 14 heterologous amino acid residues located at the amino- and carboxyl-termini including a His6 affinity tag. A second recombinant Pfs25, identified as Pfs25M, was produced to remove the heterologous amino acid residues and conjugated to EPA (Pfs25M-EPA). Here, monomeric Pfs25M was characterized biochemically and biophysically for identity, purity, and integrity including protein structure to assess its comparability with Pfs25H. Although the biological activities of Pfs25H and Pfs25M, whether generated by monomeric forms or conjugated nanoparticles, appeared similar, fine-mapping studies with two transmission-blocking monoclonal antibodies detected structural and immunological differences. In addition, evaluation of antisera generated against conjugated Pfs25H or Pfs25M nanoparticles in nonhuman primates identified polyclonal IgG that recognized these structural differences.

2.
Small ; 17(12): e2007566, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33666345

RESUMO

Organic theranostic nanomedicine has precision multimodel imaging capability and concurrent therapeutics under noninvasive imaging guidance. However, the rational design of desirable multifunctional organic theranostics for cancer remains challenging. Rational engineering of organic semiconducting nanomaterials has revealed great potential for cancer theranostics largely owing to their intrinsic diversified biophotonics, easy fabrication of multimodel imaging platform, and desirable biocompatibility. Herein, a novel all-organic nanotheranostic platform (TPATQ-PNP NPs) is developed by exploiting the self-assembly of a semiconducting small molecule (TPATQ) and a new synthetic high-density nitroxide radical-based amphiphilic polymer (PNP). The nitroxide radicals act as metal-free magnetic resonance imaging agent through shortened longitudinal relaxation times, and the semiconducting molecules enable ultralow background second near-infrared (NIR-II, 1000-1700 nm) fluorescence imaging. The as-prepared TPATQ-PNP NPs can light up whole blood vessels of mice and show precision tumor-locating ability with synergistic (MR/NIR-II) imaging modalities. The semiconducting molecules also undergo highly effective photothermal conversion in the NIR region for cancer photothermal therapy guided by complementary tumor diagnosis. The designed multifunctional organic semiconducting self-assembly provides new insights into the development of a new platform for cancer theranostics.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animais , Imageamento por Ressonância Magnética , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fototerapia , Polímeros , Nanomedicina Teranóstica
3.
Mater Horiz ; 7(6): 1474-1494, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33777400

RESUMO

Photonic theranostics (PTs) generally contain optical agents for the optical sensing of biomolecules and therapeutic components for converting light into heat or chemical energy. Semiconducting polymer nanoparticles (SPNs) as advanced PTs possessing good biocompatibility, stable photophysical properties, and sensitive and tunable optical responses from the ultraviolet to near-infrared (NIR) II window (300-1700 nm) have recently aroused great interest. Although semiconducting polymers (SPs) with various building blocks have been synthesized and developed to meet the demands of biophotonic applications, most of the SPNs were made by a nanoprecipitation method that used amphiphilic surfactants to encapsulate SPs. Such binary SP micelles usually exhibit weakened photophysical properties of SPs and undergo dissociation in vivo. SP brushes (SPBs) are products of functional post-modification of SP backbones, which endows unique features to SPNs (e.g. enhanced optical properties and multiple chemical reaction sites for the conjunction of organic/inorganic imaging agents and therapeutics). Furthermore, the SPB-based SPNs can be highly stable due to supramolecular self-assembly and/or chemical crosslinking. In this review, we highlight the recent progress in the development of SPBs for advanced theranostics.


Assuntos
Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Medicina de Precisão/métodos , Nanomedicina Teranóstica/métodos , Polímeros , Semicondutores
4.
Nat Struct Mol Biol ; 23(9): 821-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27478930

RESUMO

Hsp70s use ATP hydrolysis to disrupt protein-protein associations and to move macromolecules. One example is the Hsc70- mediated disassembly of the clathrin coats that form on vesicles during endocytosis. Here, we exploited the exceptional features of these coats to test three models-Brownian ratchet, power-stroke and entropic pulling-proposed to explain how Hsp70s transform their substrates. Our data rule out the ratchet and power-stroke models and instead support a collision-pressure mechanism whereby collisions between clathrin-coat walls and Hsc70s drive coats apart. Collision pressure is the complement to the pulling force described in the entropic pulling model. We also found that self-association augments collision pressure, thereby allowing disassembly of clathrin lattices that have been predicted to be resistant to disassembly. These results illuminate how Hsp70s generate the forces that transform their substrates.


Assuntos
Cadeias Pesadas de Clatrina/química , Proteínas de Choque Térmico HSP72/fisiologia , Multimerização Proteica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Entropia , Proteínas de Choque Térmico HSP72/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Tamanho da Partícula , Domínios Proteicos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Ratos
5.
Appl Phys Lett ; 109(26): 263106, 2016 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-28104921

RESUMO

Gold nanoparticles (AuNPs) have been increasingly integrated in biological systems, making it imperative to understand their interactions with cell membranes, the first barriers to be crossed to enter cells. Herein, liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as a model membrane system were treated with citrate stabilized AuNPs from 5 to 30 nm at various concentrations. The fluorescence shifts of Laurdan probes reveal that AuNPs in general made liposomes more fluidic. The increased fluidity is expected to result in an increased surface area, and thus liposome shape changes from circular to less circular, which was further confirmed with fluorescence microscopy. The localized stress in lipids induced by electrostatically adsorbed AuNPs was hypothesized to cause the dominant long-range effect of fluidization of unbound lipid membranes. A secondary effect of the AuNP-induced lateral pressure is the membrane rupture or formation of pores, which was probed by AFM under fluid. We found in this study a nanoparticle-mediated approach of modulating the stiffness of lipid membranes: by adsorption of AuNPs, lipids at the binding sites are stiffened whereas lipids afar are fluidized. Understanding the factors that modulate lipid packing is important for the discovery of alternative therapeutic methods for diseases linked to membrane integrity such as high blood pressure and cancer metastasis.

6.
Nanoscale ; 7(6): 2520-6, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25573051

RESUMO

Phototherapies such as photodynamic therapy (PDT) and photothermal therapy (PTT), due to their specific spatiotemporal selectivity and minimal invasiveness, have been widely investigated as alternative treatments of malignant diseases. Graphene and its derivatives not only have been used as carriers to deliver photosensitizers for PDT, but also as photothermal conversion agents (PTCAs) for PTT. Herein, we strategically designed and produced a novel photo-theranostic platform based on sinoporphyrin sodium (DVDMS) photosensitizer-loaded PEGylated graphene oxide (GO-PEG-DVDMS) for enhanced fluorescence/photoacoustic (PA) dual-modal imaging and combined PDT and PTT. The GO-PEG carrier drastically improves the fluorescence of loaded DVDMS via intramolecular charge transfer. Concurrently, DVDMS significantly enhances the near-infrared (NIR) absorption of GO for improved PA imaging and PTT. The cancer theranostic capability of the as-prepared GO-PEG-DVDMS was carefully investigated both in vitro and in vivo. This novel theranostics is well suited for fluorescence/PA dual-modal imaging and synergistic PDT/PTT.


Assuntos
Fotoquímica/métodos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Acústica , Animais , Peso Corporal , Grafite/química , Luz , Camundongos , Camundongos Nus , Microscopia de Força Atômica , Microscopia de Fluorescência , Nanotecnologia , Transplante de Neoplasias , Óptica e Fotônica , Permeabilidade , Polietilenoglicóis/química , Porfirinas/química , Espécies Reativas de Oxigênio/química , Oxigênio Singlete/química , Espectroscopia de Luz Próxima ao Infravermelho , Nanomedicina Teranóstica
7.
Biomaterials ; 42: 94-102, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25542797

RESUMO

Extensive research indicates that graphene oxide (GO) can effectively deliver photosensitives (PSs) by π-π stacking for photodynamic therapy (PDT). However, due to the tight complexes of GO and PSs, the fluorescence of PSs are often drastically quenched via an energy/charge transfer process, which limits GO-PS systems for photodiagnostics especially in fluorescence imaging. To solve this problem, we herein strategically designed and prepared a novel photo-theranostic agent based on sinoporphyrin sodium (DVDMS) loaded PEGylated GO (GO-PEG-DVDMS) with improved fluorescence property for enhanced optical imaging guided PDT. The fluorescence of loaded DVDMS is drastically enhanced via intramolecular charge transfer. Meanwhile, the GO-PEG vehicles can significantly increase the tumor accumulation efficiency of DVDMS and lead to an improved PDT efficacy as compared to DVDMS alone. The cancer theranostic capability of the as-prepared GO-PEG-DVDMS was carefully investigated both in vitro and in vivo. Most intriguingly, 100% in vivo tumor elimination was achieved by intravenous injection of GO-PEG-DVDMS (2 mg/kg of DVDMS, 50 J) without tumor recurrence, loss of body weight or other noticeable toxicity. This novel GO-PEG-DVDMS theranostics is well suited for enhanced fluorescence imaging guided PDT.


Assuntos
Diagnóstico por Imagem , Grafite/química , Óxidos/química , Fotoquimioterapia , Porfirinas/uso terapêutico , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Grafite/síntese química , Humanos , Espaço Intracelular/metabolismo , Camundongos Nus , Microscopia de Força Atômica , Óxidos/síntese química , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Porfirinas/síntese química , Porfirinas/química , Oxigênio Singlete/química , Espectrometria de Fluorescência , Distribuição Tecidual/efeitos dos fármacos
8.
ACS Nano ; 8(5): 4559-70, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24779637

RESUMO

Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells.


Assuntos
Portadores de Fármacos , Técnicas de Transferência de Genes , Nanopartículas/química , Interferência de RNA , RNA/química , Animais , Cálcio/química , Linhagem Celular Tumoral , Proliferação de Células , Doxorrubicina/química , Endocitose , Feminino , Inativação Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Hialuronoglucosaminidase/química , Concentração de Íons de Hidrogênio , Íons , Camundongos , Camundongos Nus , MicroRNAs/química , Nanoestruturas/química , Fosfatos/química , RNA Interferente Pequeno/metabolismo
9.
ACS Nano ; 8(5): 4177-89, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24708375

RESUMO

Resistance to chemotherapy is the primary cause of treatment failure in over 90% of cancer patients in the clinic. Research in nanotechnology-based therapeutic alternatives has helped provide innovative and promising strategies to overcome multidrug resistance (MDR). By targeting CD44-overexpressing MDR cancer cells, we have developed in a single-step a self-assembled, self-targetable, therapeutic semiconducting single-walled carbon nanotube (sSWCNT) drug delivery system that can deliver chemotherapeutic agents to both drug-sensitive OVCAR8 and resistant OVCAR8/ADR cancer cells. The novel nanoformula with a cholanic acid-derivatized hyaluronic acid (CAHA) biopolymer wrapped around a sSWCNT and loaded with doxorubicin (DOX), CAHA-sSWCNT-DOX, is much more effective in killing drug-resistant cancer cells compared to the free DOX and phospholipid PEG (PL-PEG)-modified sSWCNT formula, PEG-sSWCNT-DOX. The CAHA-sSWCNT-DOX affects the viscoelastic property more than free DOX and PL-PEG-sSWCNT-DOX, which in turn allows more drug molecules to be internalized. Intravenous injection of CAHA-sSWCNT-DOX (12 mg/kg DOX equivalent) followed by 808 nm laser irradiation (1 W/cm(2), 90 s) led to complete tumor eradication in a subcutaneous OVCAR8/ADR drug-resistant xenograft model, while free DOX alone failed to delay tumor growth. Our newly developed CAHA-sSWCNT-DOX nanoformula, which delivers therapeutics and acts as a sensitizer to influence drug uptake and induce apoptosis with minimal resistance factor, provides a novel effective means of counteracting the phenomenon of multidrug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Nanotecnologia/métodos , Nanotubos/química , Neoplasias/tratamento farmacológico , Animais , Apoptose , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Elasticidade , Feminino , Humanos , Camundongos , Camundongos SCID , Nanotubos de Carbono/química , Neoplasias/patologia , Fosfolipídeos/química , Polietilenoglicóis/química , Polímeros/química , Técnicas de Microbalança de Cristal de Quartzo , Semicondutores , Temperatura , Viscosidade
10.
Vaccine ; 31(28): 2954-62, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23623858

RESUMO

Successful efforts to control infectious diseases have often required the use of effective vaccines. The current global strategy for control of malaria, including elimination and eradication will also benefit from the development of an effective vaccine that interrupts malaria transmission. To this end, a vaccine that disrupts malaria transmission within the mosquito host has been investigated for several decades targeting a 25 kDa ookinete specific surface protein, identified as Pfs25. Phase 1 human trial results using a recombinant Pfs25H/Montanide ISA51 formulation demonstrated that human Pfs25 specific antibodies block parasite infectivity to mosquitoes; however, the extent of blocking was likely insufficient for an effective transmission blocking vaccine. To overcome the poor immunogenicity, processes to produce and characterize recombinant Pfs25H conjugated to a detoxified form of Pseudomonas aeruginosa exoprotein A (EPA) have been developed and used to manufacture a cGMP pilot lot for use in human clinical trials. The Pfs25-EPA conjugate appears as a nanoparticle with an average molar mass in solution of approximately 600 kDa by static light scattering with an average diameter 20 nm (range 10-40 nm) by dynamic light scattering. The molar ratio of Pfs25H to EPA is about 3 to 1 by amino acid analysis, respectively. Outbred mice immunized with the Pfs25-EPA conjugated nanoparticle formulated on Alhydrogel(®) had a 75-110 fold increase in Pfs25H specific antibodies when compared to an unconjugated Pfs25H/Alhydrogel(®) formulation. A phase 1 human trial using the Pfs25-EPA/Alhydrogel(®) formulation is ongoing in the United States.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , ADP Ribose Transferases/química , ADP Ribose Transferases/imunologia , Hidróxido de Alumínio , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/imunologia , Exotoxinas/química , Exotoxinas/imunologia , Feminino , Humanos , Vacinas Antimaláricas/química , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Camundongos , Nanopartículas , Conformação Proteica , Proteínas de Protozoários/química , Pseudomonas aeruginosa , Proteínas Recombinantes/química , Vacinação , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Fatores de Virulência/química , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
11.
Methods ; 59(3): 316-27, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23270814

RESUMO

Atomic force microscopy (AFM), single molecule force spectroscopy (SMFS), and single particle force spectroscopy (SPFS) are used to characterize intermolecular interactions and domain structures of clathrin triskelia and clathrin-coated vesicles (CCVs). The latter are involved in receptor-mediated endocytosis (RME) and other trafficking pathways. Here, we subject individual triskelia, bovine-brain CCVs, and reconstituted clathrin-AP180 coats to AFM-SMFS and AFM-SPFS pulling experiments and apply novel analytics to extract force-extension relations from very large data sets. The spectroscopic fingerprints of these samples differ markedly, providing important new information about the mechanism of CCV uncoating. For individual triskelia, SMFS reveals a series of events associated with heavy chain alpha-helix hairpin unfolding, as well as cooperative unraveling of several hairpin domains. SPFS of clathrin assemblies exposes weaker clathrin-clathrin interactions that are indicative of inter-leg association essential for RME and intracellular trafficking. Clathrin-AP180 coats are energetically easier to unravel than the coats of CCVs, with a non-trivial dependence on force-loading rate.


Assuntos
Vesículas Revestidas por Clatrina/química , Clatrina/química , Microscopia de Força Atômica/métodos , Mapeamento de Interação de Proteínas/métodos , Animais , Bovinos , Dobramento de Proteína , Estrutura Terciária de Proteína , Análise Espectral/métodos
12.
PLoS One ; 7(10): e46107, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056241

RESUMO

Many fundamental cell processes, such as angiogenesis, neurogenesis and cancer metastasis, are thought to be modulated by extracellular matrix stiffness. Thus, the availability of matrix substrates having well-defined stiffness profiles can be of great importance in biophysical studies of cell-substrate interaction. Here, we present a method to fabricate biocompatible hydrogels with a well defined and linear stiffness gradient. This method, involving the photopolymerization of films by progressively uncovering an acrylamide/bis-acrylamide solution initially covered with an opaque mask, can be easily implemented with common lab equipment. It produces linear stiffness gradients of at least 115 kPa/mm, extending from ∼1 kPa to 240 kPa (in units of Young's modulus). Hydrogels with less steep gradients and narrower stiffness ranges can easily be produced. The hydrogels can be covalently functionalized with uniform coatings of proteins that promote cell adhesion. Cell spreading on these hydrogels linearly correlates with hydrogel stiffness, indicating that this technique effectively modifies the mechanical environment of living cells. This technique provides a simple approach that produces steeper gradients, wider rigidity ranges, and more accurate profiles than current methods.


Assuntos
Movimento Celular/fisiologia , Matriz Extracelular/fisiologia , Hidrogéis/metabolismo , Fenômenos Mecânicos , Acrilamida/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Adesão Celular/fisiologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Módulo de Elasticidade/efeitos da radiação , Matriz Extracelular/química , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Hidrogéis/química , Camundongos , Microscopia de Força Atômica , Células NIH 3T3 , Reprodutibilidade dos Testes , Soluções/química , Raios Ultravioleta
13.
Eukaryot Cell ; 11(5): 615-25, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22467743

RESUMO

Thrombospondin repeat (TSR)-like domains are structures involved with cell adhesion. Plasmodium falciparum proteins containing TSR domains play crucial roles in parasite development. In particular, the preerythrocytic P. falciparum circumsporozoite protein is involved in hepatocyte invasion. The importance of these domains in two other malaria proteins, the merozoite-specific thrombospondin-related anonymous protein (MTRAP) and the thrombospondin-related apical membrane protein (PTRAMP), were assessed using near-full-length recombinant proteins composed of the extracellular domains produced in Escherichia coli. MTRAP is thought to be released from invasive organelles identified as micronemes during merozoite invasion to mediate motility and host cell invasion through an interaction with aldolase, an actin binding protein involved in the moving junction. PTRAMP function remains unknown. In this study, the conformation of recombinant MTRAP (rMTRAP) appeared to be a highly extended protein (2 nm by 33 nm, width by length, respectively), whereas rPTRAMP had a less extended structure. Using an erythrocyte binding assay, rMTRAP but not rPTRAMP bound human erythrocytes; rMTRAP binding was mediated through the TSR domain. MTRAP- and in general PTRAMP-specific antibodies failed to inhibit P. falciparum development in vitro. Altogether, MTRAP is a highly extended bifunctional protein that binds to an erythrocyte receptor and the merozoite motor.


Assuntos
Genes de Protozoários , Proteínas de Membrana/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Fenômenos Biofísicos , Cromatografia Líquida de Alta Pressão/métodos , Biologia Computacional , Eritrócitos/imunologia , Eritrócitos/parasitologia , Escherichia coli/química , Frutose-Bifosfato Aldolase/química , Humanos , Glicoproteínas de Membrana/química , Proteínas de Membrana/imunologia , Microscopia de Força Atômica , Pessoa de Meia-Idade , Dados de Sequência Molecular , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Ligação Proteica , Redobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/imunologia , Ratos , Receptores Imunológicos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Ultracentrifugação , Adulto Jovem
14.
FEBS Lett ; 584(1): 44-8, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19925798

RESUMO

Atomic force microscopy (AFM) is used to characterize the structure and interactions of clathrin triskelia. Time sequence images of individual, wet triskelia resting on mica surfaces clearly demonstrate conformational fluctuations of the triskelia. AFM of dried samples yields images having nanometric resolution comparable to that obtainable by electron microscopy of shadowed samples. Increased numbers of triskelion dimers and assembly intermediates, as well as structures having dimensions similar to those of clathrin cages, are observed when the triskelia were immersed in a low salt, low pH buffer. These entities have been quantified by AFM protein volume computation.


Assuntos
Clatrina/química , Ar , Silicatos de Alumínio/química , Microscopia de Força Atômica , Conformação Proteica , Multimerização Proteica
15.
J Biol Chem ; 284(39): 26951-63, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19633296

RESUMO

The Plasmodium falciparum circumsporozoite protein (CSP) is critical for sporozoite function and invasion of hepatocytes. Given its critical nature, a phase III human CSP malaria vaccine trial is ongoing. The CSP is composed of three regions as follows: an N terminus that binds heparin sulfate proteoglycans, a four amino acid repeat region (NANP), and a C terminus that contains a thrombospondin-like type I repeat (TSR) domain. Despite the importance of CSP, little is known about its structure. Therefore, recombinant forms of CSP were produced by expression in both Escherichia coli (Ec) and then refolded (EcCSP) or in the methylotrophic yeast Pichia pastoris (PpCSP) for structural analyses. To analyze the TSR domain of recombinant CSP, conformation-dependent monoclonal antibodies that recognized unfixed P. falciparum sporozoites and inhibited sporozoite invasion of HepG2 cells in vitro were identified. These monoclonal antibodies recognized all recombinant CSPs, indicating the recombinant CSPs contain a properly folded TSR domain structure. Characterization of both EcCSP and PpCSP by dynamic light scattering and velocity sedimentation demonstrated that both forms of CSP appeared as highly extended proteins (R(h) 4.2 and 4.58 nm, respectively). Furthermore, high resolution atomic force microscopy revealed flexible, rod-like structures with a ribbon-like appearance. Using this information, we modeled the NANP repeat and TSR domain of CSP. Consistent with the biochemical and biophysical results, the repeat region formed a rod-like structure about 21-25 nm in length and 1.5 nm in width. Thus native CSP appears as a glycosylphosphatidylinositol-anchored, flexible rod-like protein on the sporozoite surface.


Assuntos
Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Glicosilfosfatidilinositóis/metabolismo , Heparina/análogos & derivados , Heparina/metabolismo , Hepatócitos/imunologia , Hepatócitos/parasitologia , Hepatócitos/patologia , Humanos , Immunoblotting , Modelos Moleculares , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteoglicanas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Esporozoítos/metabolismo , Temperatura , Ultracentrifugação
16.
Mol Biochem Parasitol ; 164(1): 45-56, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19073223

RESUMO

Immunization with a recombinant yeast-expressed Plasmodium falciparum merozoite surface protein 3 (MSP3) protected Aotus nancymai monkeys against a virulent challenge infection. Unfortunately, the production process for this yeast-expressed material was not optimal for human trials. In an effort to produce a recombinant MSP3 protein in a scaleable manner, we expressed and purified near-full-length MSP3 in Escherichia coli (EcMSP3). Purified EcMSP3 formed non-globular dimers as determined by analytical size-exclusion HPLC with in-line multi-angle light scatter and quasi-elastic light scatter detection and velocity sedimentation (R(h) 7.6+/-0.2nm and 6.9nm, respectively). Evaluation by high-resolution atomic force microscopy revealed non-linear asymmetric structures, with beaded domains and flexible loops that were recognized predominantly as dimers, although monomers and larger multimers were observed. The beaded substructure corresponds to predicted structural domains, which explains the velocity sedimentation results and improves the conceptual model of the protein. Vaccination with EcMSP3 in Freund's adjuvant-induced antibodies that recognized native MSP3 in parasitized erythrocytes by an immunofluorescence assay and gave delayed time to treatment in a group of Aotus monkeys in a virulent challenge infection with the FVO strain of P. falciparum. Three of the seven monkeys vaccinated with EcMSP3 had low peak parasitemias. EcMSP3, which likely mimics the native MSP3 structure located on the merozoite surface, is a viable candidate for inclusion in a multi-component malaria vaccine.


Assuntos
Antígenos de Protozoários/química , Escherichia coli/genética , Modelos Moleculares , Plasmodium falciparum/química , Proteínas de Protozoários/química , Proteínas Recombinantes/química , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Aotidae , Clonagem Molecular , Expressão Gênica , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Dados de Sequência Molecular , Plasmodium falciparum/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Distribuição Aleatória , Proteínas Recombinantes/genética , Vacinas Sintéticas/imunologia
17.
Biophys J ; 93(11): 4018-30, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17704144

RESUMO

Tuberculosis is an infectious and potentially fatal disease caused by the acid-fast bacillus Mycobacterium tuberculosis (MTB). One hallmark of a tuberculosis infection is the ability of the bacterium to subvert the normal macrophage defense mechanism of the host immune response. Lipoarabinomannan (LAM), an integral component of the MTB cell wall, is released when MTBs are taken into phagosomes and has been reported to be involved in the inhibition of phago-lysosomal (P-L) fusion. However, the physical chemistry of the effects of LAM on lipid membrane structure relative to P-L fusion has not been studied. We produced membranes in vitro composed of dioleoylphosphatidylcholine, sphingomyelin, and cholesterol to simulate phagosomal lipid membranes and quantified the effects of the addition of LAM to these membranes, using fluorescence resonance energy transfer assays and atomic force microscopy. We found that LAM inhibits vesicle fusion and markedly alters lipid membrane domain morphology and sphingomyelin-chollesterol/dioleoylphosphatidylcholine ratios. These data demonstrate that LAM induces a dramatic reorganization of lipid membranes in vitro and clarifies the role of LAM in the inhibition of P-L fusion and the survival of the MTB within the macrophage.


Assuntos
Bicamadas Lipídicas/química , Lipopolissacarídeos/química , Fluidez de Membrana , Fusão de Membrana , Microdomínios da Membrana/química , Mycobacterium tuberculosis/química , Conformação Molecular
18.
Biophys J ; 90(9): 3333-44, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16473913

RESUMO

Using a new scheme based on atomic force microscopy (AFM), we investigate mechanical properties of clathrin-coated vesicles (CCVs). CCVs are multicomponent protein and lipid complexes of approximately 100 nm diameter that are implicated in many essential cell-trafficking processes. Our AFM imaging resolves clathrin lattice polygons and provides height deformation in quantitative response to AFM-substrate compression force. We model CCVs as multilayered elastic spherical shells and, from AFM measurements, estimate their bending rigidity to be 285 +/- 30 k(B)T, i.e., approximately 20 times that of either the outer clathrin cage or inner vesicle membrane. Further analysis reveals a flexible coupling between the clathrin coat and the membrane, a structural property whose modulation may affect vesicle biogenesis and cellular function.


Assuntos
Vesículas Revestidas por Clatrina/ultraestrutura , Microscopia de Força Atômica , Vesículas Revestidas por Clatrina/química , Elasticidade , Modelos Biológicos
19.
J Muscle Res Cell Motil ; 26(6-8): 291-301, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16465472

RESUMO

The giant protein titin spans half of the sarcomere length and anchors the myosin thick filament to the Z-line of skeletal and cardiac muscles. The passive elasticity of muscle at a physiological range of stretch arises primarily from the extension of the PEVK segment, which is a polyampholyte with dense and alternating-charged clusters. Force spectroscopy studies of a 51 kDa fragment of the human fetal titin PEVK domain (TP1) revealed that when charge interactions were reduced by raising the ionic strength from 35 to 560 mM, its mean persistence length increased from 0.30 +/- 0.04 nm to 0.60 +/- 0.07 nm. In contrast, when the secondary structure of TP1 was altered drastically by the presence of 40 and 80% (v/v) of trifluoroethanol, its force-extension behavior showed no significant shift in the mean persistence length of approximately approximately 0.18 +/- 0.03 nm at the ionic strength of 15 mM. Additionally, the mean persistence length also increased from 0.29 to 0.41 nm with increasing calcium concentration from pCa 5-8 to pCa 3-4. We propose that PEVK is not a simple entropic spring as is commonly assumed, but a highly evolved, gel-like enthalpic spring with its elasticity dominated by the sequence-specific charge interactions. A single polyampholyte chain may be fine-tuned to generate a broad range of molecular elasticity by varying charge pairing schemes and chain configurations.


Assuntos
Proteínas Musculares/química , Proteínas Quinases/química , Sequência de Aminoácidos , Fenômenos Biomecânicos , Soluções Tampão , Cálcio/química , Dicroísmo Circular , Conectina , Elasticidade , Éxons/genética , Humanos , Ponto Isoelétrico , Microscopia de Força Atômica , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/genética , Concentração Osmolar , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Quinases/genética , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Temperatura , Trifluoretanol/química
20.
J Mass Spectrom ; 38(11): 1150-9, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14648822

RESUMO

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) was used to investigate metal ion interactions of the 18 amino acid peptide fragment B18 (LGLLLRHLRHHSNLLANI), derived from the membrane-associated protein bindin. The peptide sequence B18 represents the minimal membrane-binding motif of bindin and resembles a putative fusion peptide. The histidine-rich peptide has been shown to self-associate into distinct supramolecular structures, depending on the presence of Zn(2+) and Cu(2+). We examined the binding of B18 to the metal ions Cu(2+), Zn(2+), Mg(2+), Ca(2+), Mn(2+) and La(3+). For Cu(2+), we compared the metal binding affinities of the wild-type B18 peptide with those of its mutants in which one, two or three histidine residues have been replaced by serines. Upon titration of B18 with Cu(2+) ions, we found sequential binding of two Cu(2+) ions with dissociation constants of approximately 34 and approximately 725 micro M. Mutants of B18, in which one histidine residue is replaced by serine, still exhibit sequential binding of two copper ions with affinities for the first Cu(2+) ion comparable to that of wild-type B18 peptide, but with a greatly reduced affinity for the second Cu(2+) ion in mutants H112S and H113S. For mutants in which two histidines are replaced by serines, the affinity for the first Cu(2+) ion is reduced approximately 3-10 times in comparison with B18. The mutant in which all three histidine residues are replaced by serines exhibits an approximately 14-fold lower binding for the first Cu(2+) ion compared with B18. For the other metal ions under investigation (Zn(2+), Mg(2+), Ca(2+), Mn(2+) and La(3+)), a modest affinity to B18 was detected binding to the peptide in a 1 : 1 stoichiometry. Our results show a high affinity of the wild-type fusogenic peptide B18 for Cu(2+) ions whereas the Zn(2+) affinity was found to be comparable to that of other di- and trivalent metal ions.


Assuntos
Histidina/metabolismo , Metais/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sequência de Aminoácidos , Cobre/metabolismo , Modelos Químicos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Peptídeos/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...