Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19006-19018, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859045

RESUMO

The accuracy of two-dimensional (2D) shape reconstruction is highly susceptible to fake peaks in the strain distribution measured by optical frequency domain reflectometry (OFDR). In this paper, a post-processing method using first-order differential local filtering is proposed to suppress fake peaks and further improve the accuracy of shape reconstruction. By analyzing the principles of 2D shape reconstruction, an explanation of how fake peaks lead to shape reconstruction errors is provided, along with the introduction of an error evaluation standard. The principle of first-order differential local filtering is presented, and its feasibility is verified by simulation. An OFDR 2D shape reconstruction system is built, with three groups of 2D shape reconstruction experiments carried out, including up bending, down bending and arch bending. The experimental results show that the end errors of the three groups of shape reconstruction are respectively reduced from 2.33%, 2.97%, and 1.07% to 0.25%, 0.78%, and 0.20%, at the shape reconstruction length of 0.5 m. The research demonstrates that the accuracy of OFDR 2D shape reconstruction can be improved by using first-order differential local filtering.

2.
ISA Trans ; 150: 298-310, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762355

RESUMO

A multi-sensor information fusion algorithm based on fault-tolerant Kalman filter is proposed in phase-sensitive optical time-domain reflectometer (Φ-OTDR) system, for achieving fading-free distributed vibration sensing. Firstly, a fault-tolerant dual-core complementary array model is designed. The Rayleigh scattering signal denoising, and vibration existence judgment of localization points are carried out to obtain the differentiated frequency demodulation results of the sensing points of the dual-core fiber array. Then a fault-tolerant control strategy is used to determine the sensor weight coefficients and vibration judgment coefficients during data fusion processing, and array data fusion is carried out based on time series data using Kalman filter to realize error value identification and filling. The advantage of this method is the combination of redundant data in a complementary way to improve the system stability. The frequency response ranges from 10 Hz to 2400 Hz and the localization accuracy is 98.33%. The influence of key parameters on the frequency demodulation performance of fault-tolerant Kalman filter is discussed, and a standard deviation of 14.6 Hz and an average error of 7.6 Hz are obtained. The demodulation frequency data matrix obtained by the classical demodulation method has a demodulation error probability of 89.18%, which proves the widespread existence of demodulation errors in vibration signals. The fusion error of demodulation frequency is reduced to 0.25 Hz, the frequency demodulation accuracy reaches 100%, and the demodulation error caused by interference attenuation can be completely eliminated. This system based on fault-tolerant Kalman filter has the characteristics of simple multiplexing structure, interference fading resistance and stable demodulation performance.

3.
Opt Lett ; 49(10): 2541-2544, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748100

RESUMO

A time-domain slicing (TDS) optical frequency domain reflectometry is proposed for large strain sensing with better spatial resolution. Compared with the conventional frequency domain slicing (FDS) method, the TDS with a Burg spectrum estimation is capable of enhancing the similarity of a local spectrum under large strain and mostly suppressing the fake peaks during the strain resolving. The experimental results demonstrated that it enables measurements of strain ranging from 600 to 4200 µÎµ with a spatial resolution of 2.4 mm and a narrow optical frequency scanning range of only 10 nm. Moreover, the measurement accuracy is improved by six times by decreasing the root mean square error (RMSE) from 8.6611 to 1.3396 µÎµ without any hardware modification.

4.
Appl Opt ; 62(9): 2283-2291, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37132867

RESUMO

Orthogonal pulse pairs generated by the polarization beam splitter (PBS) and the polarization maintaining-optical switch (PM-PSW) can effectively suppress the polarization fading in phase-sensitive optical time-domain reflectometry (Φ-OTDR) systems, but the PM-PSW also brings a lot of noise when switching the optical path periodically. Therefore, a non-local means (NLM) image-processing method is proposed to enhance the signal-to-noise ratio (SNR) of a Φ-OTDR system. Compared with the existing traditional noise reduction methods based on the one-dimensional signal, the method makes full use of redundant texture and self-similarity of multidimensional data. The NLM algorithm can obtain the estimated denoising result value of current pixels by the weighted average of pixels with similar neighborhood structures in the Rayleigh temporal-spatial image. To validate the effectiveness of the proposed approach, we have carried out experiments on the actual signals obtained from the Φ-OTDR system. In the experiment, a sinusoidal waveform of 100 Hz is applied at 20.04 km of the optical fiber as a simulated vibration signal. The switching frequency of PM-PSW is set to 30 Hz. The experimental result shows that the SNR of vibration positioning curve is 17.72 dB before denoising. After using the NLM method based on image-processing technology, the SNR reaches 23.39 dB. Experimental results demonstrate that this method is feasible and effective in improving SNR. This will help to realize accurate vibration location and recovery in practical applications.

5.
Opt Express ; 30(7): 11604-11618, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473101

RESUMO

A random coding method for a Brillouin optical time domain reflectometer (BOTDR) fiber sensor is proposed. In this method, a series of pulses modulated by random code are injected into the optical fiber to enhance the signal-to-noise ratio (SNR) and further improve the measurement accuracy. Random coding method allows the sensing range to be extended to several tens of kilometers while maintaining meter-scale spatial resolution and lower detection peak power, without modifying the conventional configuration of BOTDR. The decoding principle and the coding gain of random coding method are analyzed and simulated. We experimentally implement the method and evaluate its influence on the performance optimization of BOTDR. Compared with the single pulse with peak power of 10 mW, the measured BFS uncertainty over 4.93 km sensing fiber is reduced from 5.34 MHz to 0.38 MHz when 512-bit random coding pulses with the same peak power are utilized. The experimental results show that the coding gain of 11.93 dB is obtained by 512-bit random coding. Benefitting from the SNR enhancement, the sensing range is extended from 4.93 km to 64.76 km within a root-mean-square error (RMSE) of 3 MHz, when the pulse peak power is only 10 mW and the spatial resolution is 2 m.

6.
Sensors (Basel) ; 22(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35161942

RESUMO

In a coherent phase-sensitive optical time-domain reflectometry (Φ-OTDR) sensing system, a frequency shift of hundreds of MHz generated by the pulse modulation of an acoustic optic modulator results in a high central frequency of a beating signal spectrum. In order to reduce the high-performance hardware requirement of signal acquisition, the coherent Φ-OTDR based on envelope extraction is proposed in this paper. Firstly, a theoretical model of a quasi-sinusoidal amplitude-modulated signal is built for the beating signal between local oscillator light and Rayleigh backward scattering light. An envelope detector is then utilized to realize the envelope extraction of beating signals with advantages of a simple structure and quick response. The extracted envelope can be directly used for vibration locating without the conventional orthogonal demodulation. Experiment results present that the sampling rate can be reduced to 10 MHz under the spatial resolution of 10 m and the sensing distance of 31 km. This scheme proves that envelope extraction is a reliable technical route for vibration locating, which can effectively reduce the sampling rate and simplify the data demodulation.

7.
Appl Opt ; 60(33): 10429-10436, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34807054

RESUMO

Polarization diversity reception is a widely used method to suppress polarization fading of Φ-optical time domain reflectometer (Φ-OTDR). However, the traditional polarization diversity reception method with multichannel point-to-point signal aggregation causes the discontinuity of the aggregated signal, which affects the subsequent application. In order to decrease the discontinuity of the aggregation signal, an area-to-area signal aggregation method with a Rayleigh gray-scale pattern is proposed. First, the Rayleigh pattern is simulated to verify the large-scale continuity of fading areas. Then, an image-processing method by Rayleigh gray-scale pattern is carried out for the automatic judgment of large-scale fading areas, which includes the operations of normalization, graying, comparison of amplitude threshold using the Otsu algorithm, erosion, and dilation. The experimental results indicate that multichannel area-to-area signal aggregation can reduce the average fading ratio from 6.58% to 2.10% and also realize the signal demodulation with an SNR of 15.83 dB of positioning curve. This aggregation method provides an effective scheme for the polarization-fading suppression for Φ-OTDR.

8.
Appl Opt ; 60(2): 459-464, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33448972

RESUMO

A difference-fitting method is proposed to mitigate the low frequency drift of a phase-sensitive optical time domain reflectometry (Φ-OTDR) system caused by laser phase noise. The effective difference region for phase demodulation is theoretically analyzed and experimentally verified, which should be greater than the convolution of the spatial resolution and the length of disturbed optical fiber. Then, a median-fitting algorithm is used to obtain the phase noise of the differential region. The vibration signal of 0.2 Hz is first demodulated with the SNR of 41.79 dB on the optical fiber of 11 km. The low-frequency vibration signals of 0.05 Hz and 0.02 Hz are then successfully restored by using the difference-fitting method, which can effectively eliminate the influence of low frequency drift.

9.
Sensors (Basel) ; 20(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252485

RESUMO

In order to enhance the signal-to-noise ratio (SNR) of a distributed optical fiber vibration sensor based on coherent optical time domain reflectometry (COTDR), a high extinction ratio cascade structure of an acousto-optic modulator and semiconductor optical amplifier is applied. The prior time-frequency analysis and least mean square error algorithm are adopted in the COTDR system for amplitude demodulation and phase demodulation, in order to improve the SNR by noise elimination. The experimental results show that the adaptive filter based on the least mean square error algorithm could realize the extraction of a three-order sinusoidal harmonic signal from strong background noise along the optical fiber and the SNR improvement from 10.4 dB to 42.2 dB. The proposed demodulation algorithm is suitable for the detection of vibration signals with characteristic frequencies in the application of acoustic fault diagnosis for electromechanical devices.

10.
Sensors (Basel) ; 19(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817736

RESUMO

Phase-drift elimination is crucial to vibration recovery in the coherent detection phase-sensitive optical time domain reflectometry system. The phase drift drives the whole phase signal fluctuation as a baseline, and its negative effect is obvious when the detection time is long. In this paper, empirical mode decomposition (EMD) is presented to extract and eliminate the phase drift adaptively. It decomposes the signal by utilizing the characteristic time scale of the data, and the baseline is eventually obtained. It is validated by theory and experiment that the phase drift deteriorates seriously when the length of the vibration region increases. In an experiment, the phase drift was eliminated under the conditions of different vibration frequencies of 1 Hz, 5 Hz, and 10 Hz. The phase drift was also eliminated with different vibration intensities. Furthermore, the linear relationship between phase and vibration intensity is demonstrated with a correlation coefficient of 99.99%. The vibrations at 0.5 Hz and 0.3 Hz were detected with signal-to-noise ratios (SNRs) of 55.58 dB and 64.44 dB. With this method, when the vibration frequency is at the level of Hz or sub-Hz, the phase drift can be eliminated. This contributes to the detection and recovery of low-frequency perturbation events in practical applications.

11.
Sensors (Basel) ; 19(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974777

RESUMO

Recently, phase-sensitive Optical Time-Domain Reflectometry (Φ-OTDR)-based vibration sensor systems have gained the interest of many researchers and some efforts have been undertaken to push the performance limitations of Φ-OTDR sensor systems. Thus, progress in different areas of their performance evaluation factors such as improvement of the signal-to-noise ratio (SNR), spatial resolution (SR) in the sub-meter range, enlargement of the sensing range, increased frequency response bandwidth over the conventional limits, phase signal demodulation and chirped-pulse Φ-OTDR for quantitative measurement have been realized. This paper presents an overview of the recent progress in Φ-OTDR-based vibration sensing systems in the different areas mentioned above.

12.
Sensors (Basel) ; 19(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003510

RESUMO

In the past two decades Brillouin-based sensors have emerged as a newly-developed optical fiber sensing technology for distributed temperature and strain measurements. Among these, the Brillouin optical time domain reflectometer (BOTDR) has attracted more and more research attention, because of its exclusive advantages, including single-end access, simple system architecture, easy implementation and widespread field applications. It is realized mainly by injecting optical pulses into the fiber and detecting the Brillouin frequency shift (BFS), which is linearly related to the change of ambient temperature and axial strain of the sensing fiber. In this paper, the authors provide a review of new progress on performance improvement and applications of BOTDR in the last decade. Firstly, the recent advances in improving the performance of BOTDRs are summarized, such as spatial resolution, signal-to-noise ratio and measurement accuracy, measurement speed, cross sensitivity and other properties. Moreover, novel-type optical fibers bring new characteristics to optic fiber sensors, hence we introduce the different Brillouin sensing features of special fibers, mainly covering the plastic optical fiber, photonic crystal fiber, few-mode fiber and other special fibers. Additionally, we present a brief overview of BOTDR application scenarios in many industrial fields and intelligent perception, including structural health monitoring of large-range infrastructure, geological disaster prewarning and other applications. To conclude, we discuss several challenges and prospects in the future development of BOTDRs.

13.
Sensors (Basel) ; 18(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545094

RESUMO

The transformer used in the conventional ultrasonic ranging system could provide a huge instantaneous driving voltage for the generation of ultrasonic wave, which leads to the safety problem in the explosive mixture. This paper proposes a transformerless ultrasonic ranging system powered by the intrinsically safe power source and analog switches. The analysis of intrinsic characteristics of ultrasonic driving circuit is realized in normal and fault conditions. The echo-processing circuit combined with LIN bus technology is further adopted in order to improve the system stability. After the analysis of the timing diagram of ranging instruction, the evaluation experiments of ranging accuracy and ranging stability are completed. The results show that the system can realize reliable bidirectional communication between the LIN master node circuit and the ultrasonic transceiver unit, which realizes the transformerless driving. The system can realize the distance measurement within the range of 250⁻2700 mm, and the measurement error is less than 30 mm. The measurement fluctuation is less than 10 mm, which provides a new solution for the ultrasonic ranging system in the potentially explosive atmosphere.

14.
Sensors (Basel) ; 18(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890671

RESUMO

Phase-sensitive optical time-domain reflectometry (Φ-OTDR) is an effective technique to accomplish fully distributed vibration measurement along the entire fiber link. In this paper, a novel data matrix matching method is proposed and successfully employed in the Φ-OTDR system for real-time vibration detection and type identification. By using the novel method, the quantized response time is presented and improved to millisecond level for the first time. Meanwhile, the data can be extracted completely without packet loss, thus allowing vibration type identification to be obtained while maintaining the system simplicity. The experimental results demonstrate that the vibration signals can be detected and located with an average response time of 50.1 ms, under a data transmission speed which can go up to 77.824 Mbps. Moreover, different vibration types such as sine waves and square waves which are applied to the sensing fiber through a piezoelectric ceramic (PZT) cylinder can also be successfully identified. This method provides an efficient solution for real-time vibration location and type identification, thus exhibiting considerable application potential in many practical situations.

15.
Sensors (Basel) ; 18(5)2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29734682

RESUMO

Partial discharge detection is crucial for electrical cable safety evaluation. The ultrasonic signals frequently generated in the partial discharge process contains important characteristic information. However, traditional ultrasonic transducers are easily subject to strong electromagnetic interference in environments with high voltages and strong magnetic fields. In order to overcome this problem, an optical fiber Sagnac interferometer system is proposed for partial discharge ultrasound detection. Optical fiber sensing and time-frequency analysis of the ultrasonic signals excited by the piezoelectric ultrasonic transducer is realized for the first time. The effective frequency band of the Sagnac interferometer system was up to 175 kHz with the help of a designed 10 kV partial discharge simulator device. Using the cumulative histogram method, the characteristic ultrasonic frequency band of the partial discharges was between 28.9 kHz and 57.6 kHz for this optical fiber partial discharge detection system. This new ultrasound sensor can be used as an ideal ultrasonic source for the intrinsically safe detection of partial discharges in an explosive environment.

16.
Sensors (Basel) ; 16(8)2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27472334

RESUMO

Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

17.
Sensors (Basel) ; 16(6)2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27304958

RESUMO

In flammable or explosive environments, an ultrasonic sensor for distance measurement poses an important engineering safety challenge, because the driving circuit uses an intermediate frequency transformer as an impedance transformation element, in which the produced heat or spark is available for ignition. In this paper, an intrinsically safe ultrasonic ranging sensor is designed and implemented. The waterproof piezoelectric transducer with integrated transceiver is chosen as an energy transducing element. Then a novel transducer driving circuit is designed based on an impedance matching method considering safety spark parameters to replace an intermediate frequency transformer. Then, an energy limiting circuit is developed to achieve dual levels of over-voltage and over-current protection. The detail calculation and evaluation are executed and the electrical characteristics are analyzed to verify the intrinsic safety of the driving circuit. Finally, an experimental platform of the ultrasonic ranging sensor system is constructed, which involves short-circuit protection. Experimental results show that the proposed ultrasonic ranging sensor is excellent in both ranging performance and intrinsic safety.

18.
Sensors (Basel) ; 15(6): 12613-34, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26029949

RESUMO

Real-time detection of liquid level in complex environments has always been a knotty issue. In this paper, an intrinsically safe liquid-level sensor system for flammable and explosive environments is designed and implemented. The poly vinyl chloride (PVC) coaxial cable is chosen as the sensing element and the measuring mechanism is analyzed. Then, the capacitance-to-voltage conversion circuit is designed and the expected output signal is achieved by adopting parameter optimization. Furthermore, the experimental platform of the liquid-level sensor system is constructed, which involves the entire process of measuring, converting, filtering, processing, visualizing and communicating. Additionally, the system is designed with characteristics of intrinsic safety by limiting the energy of the circuit to avoid or restrain the thermal effects and sparks. Finally, the approach of the piecewise linearization is adopted in order to improve the measuring accuracy by matching the appropriate calibration points. The test results demonstrate that over the measurement range of 1.0 m, the maximum nonlinearity error is 0.8% full-scale span (FSS), the maximum repeatability error is 0.5% FSS, and the maximum hysteresis error is reduced from 0.7% FSS to 0.5% FSS by applying software compensation algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...