Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 170(1): 201-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26271306

RESUMO

The present study was aimed to investigate the effect of zinc oxide (ZnO) nanoparticles on 3T3-L1 cell differentiation, by quantitating peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), sterol regulatory element-binding transcription factor 1 (SREBP1), and serine-threonine kinase cyclin-dependent kinase 4 (cdk4), which are critical for adipogenesis. 3T3-L1 preadipocyte cells were cultured and differentiated with the standard differentiation medium. Sulforhodamine B (SRB) assay determined 3T3-L1 cell viability. ZnO nanoparticles increased the lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. The quantitative PCR (qPCR) analysis showed that the PPARγ, FABP4, C/EBPα, and SREBP1 messenger RNA (mRNA) expression was significantly increased in the ZnO nanoparticle-treated 3T3-L1 adipocytes. Western blot analysis showed increased PPARγ, FABP4, C/EBPα, and SREBP1 protein expression compared to their respective controls. Also, the immunofluorescence study showed the increased cdk4 and PPARγ expression in the nanoparticle-treated cells. Taking all these data together, it is concluded that ZnO nanoparticles may be a potent substance to alter 3T3-L1 preadipocyte differentiation and adipogenesis.


Assuntos
Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Nanopartículas Metálicas/química , Óxido de Zinco/química , Células 3T3-L1 , Adipócitos/citologia , Animais , Western Blotting , Imunofluorescência , Camundongos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
2.
Biol Trace Elem Res ; 170(2): 309-19, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26276565

RESUMO

Silver nanoparticles (AgNPs) have well-known anti-bacterial properties and have been widely used in daily life as various medical and general products. There is limited information available on the cytotoxicity of AgNPs. Therefore, the present study aimed to investigate the cytotoxicity of AgNPs in HeLa cells. Cytotoxicity and apoptosis have been observed in the AgNPs treated in the HeLa cells. Sulphorhodamine-B assay (SRB assay) showed the cytotoxic effect in the AgNP-treated HeLa cells. Inverted microscope, fluorescence microscope, and confocal laser scanning microscope (CLSM) analyses showed the apoptosis-induced morphological changes such as rounding in shape, nuclear fragmentation, cytoplasm reduction, loss of adhesion, and reduced cell volume. Necrosis and apoptosis were observed in the AgNP-treated HeLa cells by DNA fragmentation study. Mitochondria-derived reactive oxygen species (ROS) have increased in AgNP-treated HeLa cells. Up-regulation of messenger RNA (mRNA) expression of p53, bax, and caspase 3 were found in AgNP-treated HeLa cells. Caspase 3 enzyme activity was found to increase in AgNP-treated HeLa cells. The AgNPs showed the right cytotoxic effect in cervical carcinoma cells. Our results suggest that metal-based nanoparticles might be a potential candidate for the treatment of cervical cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Nanopartículas Metálicas , Prata/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Citotoxinas/farmacologia , Relação Dose-Resposta a Droga , Feminino , Células HeLa , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...