Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Bioresour Technol ; 406: 130999, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885721

RESUMO

Microalgae-based biotechnology holds significant potential for addressing dual challenges of phosphorus removal and recovery from wastewater; however, the removal mechanism and metabolic adaptation of microalgae to dissolved organic phosphorus (DOP) are still unclear. This study investigated the removal mechanisms and metabolomic responses of the Chlorella pyrenoidosa to different DOP forms, including adenosine triphosphate (ATP), glucose-6-phosphate (G-6-P), and ß-glycerophosphate (ß-GP). The results showed C. pyrenoidosa could efficiently take up above 96% DOP through direct transport and post-hydrolysis pathways. The uptake of inorganic phosphorus (IP) followed pseudo first order kinetic model, while DOP followed pseudo second order kinetic model. Metabolite profiling revealed substantial alterations in central carbon metabolism depending on the DOP source. G-6-P upregulated glycolytic and TCA cycle intermediates, reflecting enhanced carbohydrates, amino acids and nucleotides biosynthesis. In contrast, ATP down-regulated carbohydrate and purine metabolism, inhibiting sustainable growth of microalgae. This study offers theoretical support for phosphorus-containing wastewater treatment using microalgae.

2.
J Environ Manage ; 356: 120595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520851

RESUMO

Direct discharge of mariculture wastewater can lead to eutrophication, posing a threat to aquatic ecosystems. A novel Bacteria-Algae Coupled Reactor (BACR) offers advantages in treating mariculture wastewater, which can effectively remove pollutants while simultaneously obtaining microalgal products. However, there is limited information available on how illumination affects the cultivation of mixotrophic microalgae in this bacteria-algae coupling system. Therefore, a combined strategy of photoperiod and light intensity regulation was employed to improve the biological mariculture wastewater remediation, promote microalgae biomass accumulation, and increase the high-value product yield in this study. Optimal light conditions could effectively enhance microalgal carbohydrate, protein, lipid accumulation and photosynthetic activity, with the carbohydrate, protein and lipid contents reached 44.11, 428.57 and 399.68 mg/L, respectively. Moreover, excellent removal rates were achieved for SCOD, NH4+-N and TP, reaching 86.68%, 87.35% and 95.13% respectively. This study proposes a comprehension of BACR processes in mariculture wastewater under different light conditions.


Assuntos
Microalgas , Águas Residuárias , Ecossistema , Fotoperíodo , Nutrientes , Biomassa , Microalgas/metabolismo , Bactérias/metabolismo , Carboidratos , Lipídeos , Nitrogênio/metabolismo
3.
J Hazard Mater ; 469: 133983, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471376

RESUMO

The transient chlorophenol shock under some emergency conditions might directly affect the pollutant removal of bioreactor. Therefore, the recovery of bioreactor performance after transient chlorophenol shock is a noteworthy issue. In the present research, the performance, antioxidant response, microbial succession and functional genes of sequencing batch reactor (SBR) were evaluated under transient 2,4,6-trichlorophenol (2,4,6-TCP) shock. The chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) removal efficiencies decreased sharply in the first 4 days after 60 mg/L 2,4,6-TCP shock for 24 h and gradually recovered to normal in the subsequent 8 days. The nitrogen removal rates and their corresponding enzymatic activities rapidly decreased after transient 2,4,6-TCP shock and then gradually increased to normal. The increase of antioxidant enzymatic activity, Cu-Zn SOD genes and Fe-Mn SOD genes contributed to the recovery of SBR performance. The abundance of genes encoding ammonia monooxygenase and hydroxylamine dehydrogenase decreased after transient 2,4,6-TCP shock, including amoA, amoC and nxrA. Thauera, Dechloromonas and Candidatus_Competibacter played key roles in the restorative process, which provided stable abundances of narG, norB , norC and nosZ. The results will deeply understand into the effect of transient 2,4,6-TCP shock on bioreactor performance and provide theoretical basis to build promising recoveries strategy of bioreactor performance.


Assuntos
Antioxidantes , Clorofenóis , Reatores Biológicos , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos
4.
Bioresour Technol ; 397: 130465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373503

RESUMO

The nitrogen transformation, enzymatic activity, antioxidant ability and transcriptional response of Chlorella pyrenoidosa (C. pyrenoidosa) treating mariculture wastewater were compared under different light intensities. The microalgal growth, chlorophyll synthesis and nitrogen removal ability of C. pyrenoidosa increased with the light intensity from 3000 to 7000 Lux, whereas they slightly decreased under 9000 and 11,000 Lux. The nitrogen metabolism enzymatic activities displayed obvious differences under different light intensities and affected the nitrogen transformation process. The reactive oxygen species (ROS) production increased with the increase of operational time, whereas it had distinct differences under different light intensities. The changes of antioxidant enzymatic activities were positively correlated with the ROS production. The transcriptional response of C. pyrenoidosa was in accordance with the variation of the photosynthesis, nitrogen assimilation and antioxidant system under different light intensities. This study provides theoretical basis and technical support to select suitable light intensity for algae treating mariculture wastewater.


Assuntos
Chlorella , Águas Residuárias , Chlorella/metabolismo , Antioxidantes/metabolismo , Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Environ Res ; 247: 118260, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272292

RESUMO

Tetracycline (TC) was widely used and frequently detected in various water bodies, where the presence of TC posed a significant threat to the health of aquatic organisms. Furthermore, antibiotics were hardly degraded by biological treatment. Thus, in order to enhance the removal of TC, we proposed the use of a novel ultraviolet/sodium percarbonate (UV/SPC) advanced oxidation process and initiated an in-depth study. The study investigated the influence of oxidant dosage, initial pH, UV intensity, and TC concentration on the removal of TC. The results demonstrated that the UV/SPC system efficiently removed TC, with removal efficiency increasing as the SPC concentration increased. Within the pH range of 3-11, TC degradation exhibited minimal variation, indicating the UV/SPC system's strong adaptability to pH variations. The research on the impact of the water matrix on TC removal revealed that HCO3- had an inhibitory effect on TC degradation, while NO3- promoted TC degradation. Additionally, the presence of free radical species (·OH, ·CO3-, ·O2-) were detected and rate constants for the secondary reactions (k·OH,TC = 6.3 × 109 L mol-1·s-1, k·CO3-,TC = 3.4 × 108 L mol-1·s-1) were calculated, indicating that ·OH exhibited a stronger oxidative performance compared to ·CO3-. This study did not only present a novel strategy via UV/SPC to remove TC but also uncovered the unique role of ·CO3- for contaminant removal.


Assuntos
Carbonatos , Poluentes Químicos da Água , Purificação da Água , Água , Poluentes Químicos da Água/análise , Antibacterianos , Tetraciclina , Oxirredução , Purificação da Água/métodos , Raios Ultravioleta
6.
Bioresour Technol ; 385: 129410, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390931

RESUMO

To achieve the goal of cost-effective mariculture wastewater treatment, a novel Bacteria-Algae Coupling Reactor (BACR) integrating acidogenic fermentation with microalgae cultivation was applied for the mariculture wastewater treatment. Currently, there is limited research on the impact of different concentrations of mariculture wastewater on the pollutant removal and the high-value products recovery. In this study, different concentrations (4, 6, 8, and 10 g/L) of mariculture wastewater were treated with BACR. The results showed thatoptimalMW concentrations of 8 g/L improved the growth viability and biochemical components synthetic of Chlorella vulgaris, which increased the potential for high-value products recovery. The BACR exhibited the excellent removal efficiency of chemical oxygen demand, ammonia-nitrogen and total phosphorus with 82.30%, 81.12% and 96.40%, respectively. This study offers an ecological and economic approach to improve the MW treatment through the utilization of a novel bacterial-algal coupling system.


Assuntos
Chlorella vulgaris , Microalgas , Águas Residuárias , Fermentação , Bactérias , Nitrogênio , Biomassa , Fósforo
7.
Environ Pollut ; 327: 121598, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031851

RESUMO

Sulfadiazine (SDZ) as a typical sulfonamide antibiotic is commonly detected in wastewater, and its removal mechanism and transformation pathways in microalgae-mediated system remain unclear. In this study, the SDZ removal through hydrolysis, photodegradation, and biodegradation by Chlorella pyrenoidosa was investigated. Higher superoxide dismutase activity and biochemical components accumulation were obtained under SDZ stress. The SDZ removal efficiencies at different initial concentrations were 65.9-67.6%, and the removal rate followed pseudo first-order kinetic model. Batch tests and HPLC-MS/MS analyses suggested that biodegradation and photodegradation through the reactions of amine group oxidation, ring opening, hydroxylation, and the cleavage of S-N, C-N, C-S bond were dominant removal mechanisms and pathways. Characteristics of transformation products were evaluated to analyze their environmental impacts. High-value products of lipid, carbohydrate, and protein in microalgae biomass presented economic potential of microalgae-mediated metabolism for SDZ removal. The findings of this study broadened the knowledge for the microalgae self-protection from SDZ stress and provided a deep insight into SDZ removal mechanism and transformation pathways.


Assuntos
Chlorella , Microalgas , Sulfadiazina/química , Microalgas/metabolismo , Chlorella/metabolismo , Espectrometria de Massas em Tandem , Antibacterianos/química
8.
Bioresour Technol ; 372: 128699, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731617

RESUMO

The performance, microbial community and functional genes of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater under different aerobic/anoxic alternation number. The removal efficiency of chemical oxygen demand (COD) and NH4+-N kept at 95.66 ± 1.83 % and 90.28 ± 2.42 % under aerobic/anoxic alternation number between 1 and 4. The total nitrogen (TN) removal efficiency gradually decreased from 94.45 ± 1.12 % to 83.06 ± 1.25 % with the increase of aerobic/anoxic alternative number from 1 to 4. The nitrification rates and their corresponding enzymatic activities increased slightly with the increase of aerobic/anoxic alternation number, whereas the denitrifying process had the contrary results. The variation of aerobic/anoxic alternation number obviously affected the microbial diversity and abundance. The microbial network structure and keystone taxa were different under different aerobic/anoxic alternation number. The functional genes abundance for the denitrification pathway decreased with the increase of aerobic/anoxic alternation number.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Nitrificação , Consórcios Microbianos , Biofilmes , Nitrogênio/metabolismo , Desnitrificação
9.
Bioresour Technol ; 372: 128700, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738978

RESUMO

The nitrogen removal performance and biological mechanism of Platymonas helgolandica var. Tsingtaoensis (P. helgolandica) were investigated in treating mariculture wastewater under different light: dark (L:D) photoperiods. The growth of P. helgolandica was positively correlated with the photoperiods from 6L:18D to 15L:9D, and the highest photosynthetic activity appeared under 6L:18D photoperiod on day 3. P. helgolandica exhibited the highest removal efficiencies of total nitrogen and COD at 89 % and 93 % under 15L:9D photoperiod, respectively. NH4+-N assimilation was proportional to the photoperiods from 6L:18D to 15L:9D and longer illumination promoted NO2--N removal. However, the highest NO3--N reduction rate was achieved under 12L:12D photoperiod. The different nitrogen-transformed enzymatic activities were affected by photoperiod. Transcriptome revealed that unigenes were enriched in nitrogen metabolism and photosynthesis pathways, of which the functional gene expression was up-regulated significantly. This study provides insights into the optimization of photoperiod for mariculture wastewater treatment by P. helgolandica.


Assuntos
Fotoperíodo , Águas Residuárias , Nitrogênio , Desnitrificação , Fotossíntese
10.
J Environ Manage ; 323: 116213, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108513

RESUMO

The effect of salinity on the nitrogen removal performance and microbial community of activated sludge was investigated in a sequencing batch reactor. The NH4+-N removal efficiency was over 95% at 0-4% salinity, indicating that the nitrification performance of activated sludge was slightly affected by lower salinity. The obvious nitrite accumulation was observed with the increment of the salinity to 5%, followed by a notable decline in the nitrogen removal performance at 6% salinity. The salinity inhibited the microbial activity, and the specific rate of nitrification and denitrification was decreased by the increasing salinity obviously. Additionally, the lower activity of superoxide dismutase and peroxidase and higher reactive oxygen species content in activated sludge might account for the deteriorative nitrogen removal performance at 6% salinity. Metagenomics analysis revealed that the genes encoding the ABC-type quaternary amine transporter in the ABC transporter pathway were abundant in the activated sludge at 2% and 4% salinity, and the higher salinity of 6% led to the loss of the genes encoding the p-type Na+ transporter in the ABC transporter pathway. These results indicated that the salinity could weaken the ABC transporter pathway for the balance of osmotic pressure in activated sludge. The microbial activity and nitrogen removal performance of activated sludge were decreased due to the unbalanced osmotic pressure at higher salinity.


Assuntos
Nitrogênio , Esgotos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminas , Reatores Biológicos , Desnitrificação , Metagenômica , Nitrificação , Nitritos , Nitrogênio/análise , Peroxidases/metabolismo , Espécies Reativas de Oxigênio , Salinidade , Superóxido Dismutase/metabolismo , Eliminação de Resíduos Líquidos/métodos
11.
J Environ Manage ; 323: 116155, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116256

RESUMO

The effect of sequencing batch membrane bioreactor (SMBR) on external carbon addition and enrofloxacin was investigated to treat synthetic mariculture wastewater. Anoxic/anaerobic and low COD/TN can improve the ammonia oxidation of the system, and the NH4+-N removal efficiency above 99%. External carbon was added and an anoxic environment was set to provide a suitable environment for denitrifying bacteria. When the external carbon source was 50-207 mg/L, the TN removal efficiency (31.82%-37.73%) and the COD of the effluent (28.85-36.58 mg/L) had little change. The partition resistance model showed that cake deposition resistance (RC,irr) and irreversible resistance (RPB) were the main components. And with the increase in cleaning times, the fouling rate of membrane components accelerated. Enrofloxacin can promote the TN removal efficiency (45.66%-93.74%) and had a significant effect on TM7a, Cohaesibacter, Vibrio and Phaeobacter.


Assuntos
Microbiota , Águas Residuárias , Amônia , Reatores Biológicos/microbiologia , Carbono , Desnitrificação , Enrofloxacina , Nitrogênio , Eliminação de Resíduos Líquidos
12.
Chemosphere ; 308(Pt 3): 136558, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150488

RESUMO

Synthetic phytohormone (SP) is regarded as an attractive candidate for microalgae cultivation due to its potential for high-value microalgae biomass production. Herein, α-naphthylacetic acid (NAA), indomethacin (IN) and 2,4-dichlorophenoxyacetic acid (2,4-D) were used for the mixotrophic cultivation of Chlorella pyrenoidosa with mariculture wastewater (MW) acidogenic fermentation effluent. The growth and lipid accumulation of Chlorella pyrenoidosa added with SP were enhanced, given their high bioavailability of the nutrients. Among these three SPs, IN was optimal for Chlorella pyrenoidosa growth, with the maximum optical density of 1.81. NAA exhibited the best performance for lipid production and the proportion of lipid reached 50.24%. Furthermore, the energy of Chlorella pyrenoidosa cultured with SP preferentially allocated to lipogenesis. To understand the mechanism of lipid accumulation in Chlorella pyrenoidosa in response to SP, the enzyme activities involved in carbon metabolism were determined. The malic enzyme (ME) and acetyl-CoA carboxylase (ACCase) were positively correlated with lipid accumulation. Phosphoenolpyruvate carboxylase (PEPC) was the negative feedback enzyme for lipid synthesis. The findings could provide valuable information for regulation mechanism of lipid accumulation and value-added products recovery by microalgae.


Assuntos
Chlorella , Microalgas , Ácido 2,4-Diclorofenoxiacético/metabolismo , Acetil-CoA Carboxilase/metabolismo , Biomassa , Carbono/metabolismo , Chlorella/metabolismo , Indometacina , Lipídeos , Microalgas/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Águas Residuárias
13.
Bioresour Technol ; 363: 127987, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126847

RESUMO

Sulfadiazine (SDZ) as a common sulfonamide antibiotic is frequently detected in wastewater, but there is little information on the high-value product recovery and toxicity tolerance evaluation of mixotrophic microalgae under SDZ stress. In this study, effects of SDZ on growth, photosynthesis, cellular damage, antioxidant capacity and intracellular biochemical components of Chlorella pyrenoidosa were investigated. Results showed that the growth of C. pyrenoidosa was inhibited by about 20% under high SDZ stress, but there was little impact on photosynthesis. Cellular damage and antioxidant capacity were evaluated using malondialdehyde (MDA) content and superoxide dismutase (SOD) activity to further explain the toxicity tolerance of mixotrophic microalgae. The SDZ stress not only increased lipid and carbohydrate content, respectively attaining to the maximum of 390.0 and 65.4 mg/L, but also improved the biodiesel quality of C. pyrenoidosa. The findings show the potential of mixotrophic microalgae for biodiesel production and wastewater treatment.


Assuntos
Chlorella , Microalgas , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Biocombustíveis , Biomassa , Carboidratos/farmacologia , Lipídeos/farmacologia , Malondialdeído/farmacologia , Sulfadiazina , Superóxido Dismutase , Águas Residuárias
14.
Environ Pollut ; 311: 119641, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35787425

RESUMO

Based on the application of sediment microbial fuel cell (SMFC) in the bioremediation of sediment, this study used the sediment microbial fuel cell technology as the leading reactor. Modification of anode carbon felts (CF) by synthesis of PANI/MnO2 composited to improve the electrical performance of the sediment microbial fuel cell. This study investigated the degradation effects, degradation pathways of the specific contaminant enrofloxacin and microbial community structure in sediment microbial fuel cell systems. The results showed that the sediment microbial fuel cell system with modified anode carbon felt (PANI-MnO2/CF) prepared by in-situ chemical polymerization had the best power production performance. The maximum output voltage was 602 mV and the maximum power density was 165.09 mW m-2. The low concentrations of enrofloxacin (12.81 ng g-1) were effectively degraded by the sediment microbial fuel cell system with a removal rate of 59.52%.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Eletrodos , Enrofloxacina , Sedimentos Geológicos/química , Compostos de Manganês , Óxidos
15.
Bioresour Technol ; 358: 127401, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660456

RESUMO

This study investigated the removal of nitrogen and sulfamethoxazole (SMX), and the microbial communities in a partially saturated vertical flow constructed wetland (PS-VFCW) fed with synthetic mariculture wastewater operated at different saturated zone depths (SZDs), i.e. 51, 70, and 60 cm. Removal efficiencies were 99.8%-100.0% for COD, 34.1%-100.0% for NH4+-N, 67.8%-97.3% for total inorganic nitrogen (TIN), and 29.8%-57.2% for SMX. Excellent nitrification performance was achieved at the SZDs of 51 and 60 cm. Denitrification performed well at 70 and 60 cm SZDs. The highest TIN removal efficiency (97.3%) was achieved as the SZD was 60 cm. SMX removal was significantly influenced by SZD and was promoted by higher SZD. The removal of organics, nitrogen, and SMX mainly occurred in the unsaturated zone. Ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, and SMX-degrading bacteria were detected in the unsaturated and saturated zones, and showed an increasing trend in abundance along the depth.


Assuntos
Águas Residuárias , Áreas Alagadas , Desnitrificação , Nitrificação , Nitrogênio/análise , Sulfametoxazol , Eliminação de Resíduos Líquidos
16.
Sci Total Environ ; 842: 156670, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35700780

RESUMO

Anaerobic ammonium oxidation (anammox) is a promising technology applied to treat industrial wastewater, while the commonly coexistent heavy metals and salinity usually become a challenging issue to be addressed. In this study, the responses of anammox sludge in terms of performance, activity, functional enzyme and extracellular polymeric substance (EPS) to the combined stress of Ni(II) and salinity (20 ‰) were investigated holistically. It turned out that low Ni(II) concentration (0.2 mg·L-1) together with salinity (20 ‰) showed an insignificant effect on the anammox performance, while a decreased nitrogen removal by 46.96 % was observed with the increased Ni(II) concentration to 1 mg·L-1. It should be pointed out that the anammox system exhibited good robustness evidenced by rapid recovery to achieve 89.13 % of nitrogen removal efficiency and 1.21 kg·m-3·d-1 of nitrogen removal rate after the elimination of stress factors within 40 days. Ni(II) concentration was revealed to play a more important role in the specific activity of anammox sludge. The functional enzymes related to nitrogen removal, e.g. nitrite reductase (NIR), hydrazine oxidase (HZO) and heme c were found to be inhibited by the combined stress of Ni(II) and salinity, with decreased activity by 49.54 %, 39.39 % and 45.88 %, respectively. However, the enzyme related to assimilation, e.g. alkaline phosphatase (AKP) and nitrate reductase (NAR) appeared to be enhanced. The EPS content was found to decrease by 55.19 % under the combined stress. Detailed analysis of 3D-EEM and FTIR spectra further revealed that the combined stress of Ni(II) and salinity could change both the quantity and composition of EPS in anammox sludge. These results are expected to offer insights into the combined effect of nickel and salinity on the anammox system, and benefit the application of anammox technology for industrial metal-rich saline wastewater treatment.


Assuntos
Salinidade , Esgotos , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Níquel , Nitrogênio , Oxirredução , Águas Residuárias
17.
Chemosphere ; 305: 135448, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35764112

RESUMO

In this study, a novel electrifying mode (divided power-on and power-off stage) was applied in the system of BDD activate sulfate to degrade tetracycline hydrochloride (TCH). The BDD electrode could activate sulfate and H2O to generate sulfate radicals (SO4•-) and hydroxyl radicals (•OH) to remove TCH, and SO4•- could dimerize to form S2O82-. Then, the S2O82- was activated by heat and quinones to generate SO4•- for the continuous degradation of TCH during the power-off stage. In addition, the intermittent time has a significant effect on the degradation of TCH. Factors, affecting the accumulation of S2O82-, were analyzed using a full factorial design, and the accumulation of S2O82- could reach 16.2 mM in 120 min. The results of electron spin resonance and radical quenching test showed that SO4•-, •OH, direct electron transfer (DET), and non-radical in the system could effectively degrade TCH, and SO4•- was dominated. The intermediate products of TCH were analyzed by HPLC-QTOF-MS/MS, and the TCH mainly underwent hydroxylation, demethylation and ring opening reactions to form small molecules, and finally mineralized. The results of the feasibility analysis revealed that some intermediates have high toxicity, but the system could improve the toxicity. The results of energy consumption indicated that the intermittent electrifying mode could make full use of the persulfate generated during the power-on stage and reduce about 30% energy consumption. In conclusion, this work demonstrated that it was economically feasible to degrade TCH in wastewater by activating sulfate with BDD electrodes with an intermittent electrifying mode.


Assuntos
Boro , Poluentes Químicos da Água , Boro/química , Eletrodos , Oxirredução , Sulfatos/química , Óxidos de Enxofre , Espectrometria de Massas em Tandem , Tetraciclina/análise , Poluentes Químicos da Água/análise
18.
Chemosphere ; 303(Pt 1): 134904, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35561784

RESUMO

Phosphorus (P) is a non-substitutable resource and global reserves of phosphate rock are limited. In this study, phosphorus recovery by Chlorella vulgaris, and the effects of different light intensities (2000 Lux, 5000 Lux, 8000 Lux, 12,000 Lux) on the phosphorus distribution in the soluble microbial product (SMP), extracellular polymeric substance (EPS) and intracellular polymeric substance (IPS) were analyzed. The results showed that the 5000 Lux was the optimum light intensity for P uptake and transformation by Chlorella vulgaris under mixotrophic cultivation. At the light intensity of 5000 Lux, the P uptake rate was 100% after 32 days of cultivation, and the concentration of intracellular organic phosphorus (OP) was 5.77 mg P/L. Moreover, EPS was the main P pool when inorganic phosphorus (IP) was depleted in bulk solution. Phosphorus recovery by microalgae is an important solution to treat P-containing wastewater.


Assuntos
Chlorella vulgaris , Microalgas , Biomassa , Matriz Extracelular de Substâncias Poliméricas , Iluminação , Fósforo , Águas Residuárias
19.
Environ Res ; 212(Pt C): 113403, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35525291

RESUMO

Seeking available and economical carbon sources for denitrification process is an intractable issue for wastewater treatment. However, no study compared different types of waste sludge as carbon source from denitrification mechanism, organics utilization and microbial community aspects. In this study, primary and secondary sludge were pretreated by thermophilic bacteria (TB), and its hydrolysis or acidogenic liquid were prepared as carbon sources for denitrification. At C/N of 8-3, the variations of NO3--N and NO2--N were profiled in typical cycles and denitrification kinetics was analyzed. Primary sludge achieved a competitive NOX-N removal efficiency with less dosage than secondary sludge. Fourier transform infrared (FTIR) spectroscopy was introduced to analyze organic composition from functional-group perspective and the utilization of organic matters in different sludge carbon sources was investigated. To further analyze the microbial community shift in different denitrification systems, high-throughput sequencing technology was applied. Results showed that denitrifier Thauera, belonging to Proteobacteria, was predominant, and primary sludge acidogenic liquid enriched Thauera most intensively with relative abundance of 47.3%.


Assuntos
Microbiota , Esgotos , Reatores Biológicos , Carbono , Desnitrificação , Hidrólise , Cinética , Nitratos , Nitrogênio/análise , Esgotos/química , Águas Residuárias/química
20.
Water Res ; 215: 118256, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278913

RESUMO

To achieve the goal of treating mariculture wastewater economically and efficiently, a novel bacterial-algal coupling reactor (BACR) integrating acidogenic fermentation and microalgae cultivation was firstly investigated for mariculture wastewater treatment. Volatile fatty acids (VFAs) generated in the dark chamber migrated into the photo chamber for microalgal utilization, which alleviated the pH drop and feedback inhibition of the acidogenic fermentation. The maximum dry cell weight (DCW) of microalgae was 1.46 g/L, and pollutants such as chemical oxygen demand (COD), ammonium (NH4+-N) and total phosphorus (TP) in the BACR were effectively removed under the mixotrophic culture condition. Furthermore, bacterial community profiles and functional genes in the BACR and single acidogenic fermentation reactor were identified. Compared with the single acidogenic fermentation reactor, most of the fermentative bacteria (e.g., Ruminococcus, Christensenellaceae R-7 group, Exiguobacterium, Pseudomonas and Levilinea) were enriched by the BACR. From the genetic perspective, the abundances of dominant genes (ackA, acs and atoD) associated with acetic, propionic and butyric acid production were greatly enhanced in the BACR. In the fatty acid biosynthesis pathway (ko00061), three kinds of high-abundance acetyl-CoA carboxylase genes and eight kinds of downstream functional genes were up-regulated in the BACR. Finally, based on co-occurrence network analysis, the coordination between fermentative bacteria and microalgae in the BACR was revealed. This study provided a deep insight into the advantage and potential of the BACR in mariculture wastewater treatment.


Assuntos
Microalgas , Purificação da Água , Bactérias/genética , Bactérias/metabolismo , Fermentação , Metagenômica , Microalgas/genética , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...