Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120932, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652983

RESUMO

Increasing manganese (Mn) concentrations in source water contribute to aesthetic and health-related concerns in drinking water. The challenges with Mn in drinking water primarily arise from elevated Mn concentrations in the water supply reservoir, with the inefficacy of Mn treatment largely attributed to fluctuating Mn levels in the water source. A three-dimensional Mn cycle model in a temperate monomictic reservoir, Tarago Reservoir, and a decision support system reflecting Mn variations in the local water treatment plant have been established in previous research. This study aimed to examine Mn variations from the reservoir to raw water and treated water under the influence of wind conditions during different stages of thermal structure, and discover valuable recommendations for Mn treatment in the local water supply system. We crafted 12 scenarios to scrutinize the impact of varying intensities of offshore and onshore winds on hydrodynamic processes and Mn transport during strong thermal stratification, weak thermal stratification, and turnover. The scenario analysis revealed that, during the gradual weakening of thermal stratification, offshore wind induced a substantial amount of Mn to the upper layers near the water intake point. Conversely, onshore wind hindered the upward transport of Mn. The simulated Mn in the raw water under the 12 scenarios indicated that the timing of turnover in the Tarago Reservoir is the primary concern for Mn treatment in the water treatment plant. Additionally, close attention should be given to the frequency and intensity of offshore winds during the weakening of thermal stratification.


Assuntos
Manganês , Abastecimento de Água , Vento , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Água Potável/química
2.
Sci Total Environ ; 918: 170284, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38266724

RESUMO

Multiple coexisting seasonal lakes are observed in the Poyang Lake basin. The interaction between surface water and groundwater, along with solute transport at the sediment-water interface (SWI), plays a crucial role in material cycling within the Poyang Lake ecosystem. However, the mechanisms governing how the relative positions of these lakes influence solute transport at the SWI remain unclear. This study employs indoor experiments and simulations based on real topography to investigate how the separation distance and elevation differences between two seasonal lakes, termed "lake A" (situated farther from the main lake) and "lake B" (closer to the main lake), affect solute transport. Findings highlight a distinct recharge pattern from lake A to lake B and the main lake during periodic water level fluctuations. A reduced distance between dual seasonal lakes results in a diminished water level drop in lake B during dry seasons. Proximity allows lake A to contribute more solutes to the main lake while promoting solute transport from lake B to the main lake, increasing the pore water recharge flux to overlying water in lake B. In cases where the separation distance has insufficient impact on water levels, the speed of pore water flow in this area inversely correlates with the distance between dual lakes. Reducing the distance intensifies solute transport into the bottom of lake A. Lower the elevation of lake B increases the water level difference between dual seasonal lakes, curtailing pollution within the lakebed. Elevating lake B forms hydrological isolation and more severe pollution of the lakebed. Solutes predominantly transport between lake B and the main lake, with pollution spreading to the lakebed of lake A and transitioning to downward diffusion over time. This research provides valuable insights for the hydraulic regulation of seasonal lakes and holds significance for the ecological restoration of Poyang Lake.

3.
Chemosphere ; 307(Pt 1): 135596, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35803374

RESUMO

The dissemination of antibiotic resistance genes (ARGs) in aquaculture systems is a potential threat to environmental safety and human health. However, the spatiotemporal distribution pattern of ARGs and key factors associated with their dissemination in aquaculture sediments remain unclear. In this study, ARGs, mobile genetic elements, microbial community composition, heavy metal contents, and nutrient contents of samples collected from a whole culture cycle of fish in a representative aquaculture farm were characterized. The distribution patterns of nine subtypes of ARGs (tetW, tetM, tetA, ermC, ermB, sul1, sul2, floR, and qnrS) showed clear spatiotemporal differences. The absolute abundance of ARGs in aquaculture sediments was higher in winter and in rivers of the aquaculture farm. Proteobacteria was the dominant phylum in all sediment samples. The results of network and redundancy analyses confirmed that the Dechloromonas, Candidatus Accumulibacter, Smithella, Geobacter, and Anaeromyxobacter belonging to Proteobacteria were positively correlated with ARGs, suggesting that these microbial species are potential hosts of corresponding ARGs. Our study highlights that the microbial community is the determining factor for ARG dissemination. Strategies for inhibiting these potential hosts of ARGs should be developed based on controllable factors.


Assuntos
Metais Pesados , Microbiota , Animais , Antibacterianos/análise , Antibacterianos/farmacologia , Aquicultura , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Metais Pesados/análise
4.
Sci Total Environ ; 826: 154097, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35219678

RESUMO

Attenuation of groundwater ammonium (NH4+) is expected to occur through redox reaction and adsorption of the riverbank. Previous studies determined that NH4+ mostly degraded through nitrification along subsurface flow, however, the adsorption capacities of riverbanks were always ignored in the NH4+ reduction processes. In this study, field experiments were conducted in the Fuliji section of the Xiaosuixin River, China, to understand NH4+ transport and attenuation under rainfall events-induced river and groundwater interactions. The results indicated that the NH4+ concentration in river water increased significantly after heavy rainfall events and reached a peak of about 5.88 mg L-1, and the lag time was more than 2 weeks compared with the river peak stage. Adsorption plays a dominant role in attenuation of NH4+ in riverbank with high amounts of organic materials and clay minerals, reducing its concentration to less than 0.05 mg L-1. A two-dimensional lateral exchange and transport model of NH4+ was developed and calibrated against observations in the aquifer, and an exponential reduction pattern of NH4+ was identified. The model's possible implications about the effects of varying hydrologic changes (i.e., peak stage and lag time differences between river and groundwater) on NH4+ transport were also discussed. Thus, the effects of river-groundwater interactions on nitrogen pollution should be taken into consideration in river regulation strategies in order to ensure proper hydrogeochemical functioning of river-aquifer interfaces and related ecosystems.


Assuntos
Compostos de Amônio , Água Subterrânea , Poluentes Químicos da Água , China , Ecossistema , Hidrologia , Rios , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 806(Pt 1): 150498, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563908

RESUMO

Sediment microbial communities play critical roles in the health of fish and the biogeochemical cycling of elements in aquaculture ecosystems. However, the response of microbial communities to temporal and spatial variations in interconnected aquaculture pond and ditch systems remains unclear. In this study, 61 sediment bacterial samples were collected over one year from 11 sites (including five ponds and six ditches) in a 30-year-old fish aquaculture farm. The 16S rRNA approach was used to determine the relative abundances of microbial communities in the sediment samples. The relationships among nutrients, heavy metals, and abundant microorganisms were analyzed. Our results showed that Proteobacteria, Bacteroides and Chloroflexi were the predominant phyla in the sediments of aquaculture pond, with average abundances of 36.33%, 18.60%, and 14.58%, respectively. The microbial diversity in aquaculture sediments was negatively correlated (P < 0.05) with the concentrations of total nitrogen and total phosphorus in sediments, indicating that the microbial diversity is highly associated with the remediation of nutrients in sediments. The sediment samples with high similarities were discovered by the t-distributed stochastic neighbor embedding (t-SNE) method. The site-specific correlations between specific microorganisms and heavy metals were explored. The network analysis revealed that the microbial diversities in aquaculture ponds were more stable than that in aquaculture ditches. The network analysis also illustrated that the microbial genera with low relative abundances may become key groups of microbial communities in sediment ecosystems. Our work deepens the understanding of the relationships between microbial communities and the spatiotemporal characteristics of surface water and sediments in aquaculture farms.


Assuntos
Microbiota , Lagoas , Animais , Aquicultura , Sedimentos Geológicos , RNA Ribossômico 16S/genética
6.
Environ Sci Pollut Res Int ; 28(44): 62877-62890, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34218383

RESUMO

Interactions among multiple nutrients uptake certainly have a great effect on their retention in headwater streams, yet little research has been made to explore the quantitative characteristics of their interactions, especially in mesotrophic streams. In response, we conducted an identical series of instantaneous nutrient addition experiments, using ammonium nitrogen (NH4-N) and phosphate phosphorus (PO4-P) alone or together, in two mesotrophic agricultural headwater streams in Chaohu Lake Basin, China, to quantify the relationships between nutrient concentrations and uptake rates, and examine how NH4-N and PO4-P interact to affect their individual uptake. Both the Michaelis-Menten (M-M) equation and response surface model were utilized to analyze coupled NH4-N and PO4-P uptake patterns across a range of nutrient concentrations, by fitting the kinetic processes of NH4-N and PO4-P uptake in single- and dual-nutrient additions. The capacity of both NH4-N and PO4-P uptake was increased in different degrees in dual-nutrient additions. Response surface models could quantitatively characterize the three-dimensional dynamic evolution trend of NH4-N or PO4-P uptake rates at different concentrations. The influence of PO4-P additions on NH4-N uptake was generally greater than that of NH4-N on PO4-P uptake in the five tracer tests. In addition, results of correlation analysis indicated that water temperature might be the main factor affecting the coupling of N and P uptake in mesotrophic streams and followed by hydrological factors (e.g., discharge) and channel geomorphology.


Assuntos
Lagos , Rios , China , Cinética , Nitrogênio/análise , Nutrientes , Fósforo/análise
7.
Water Res ; 172: 115489, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006772

RESUMO

Benzene is a toxic contaminant and can harm many aquatic species and cause serious damages to the river eco-system, if released to rivers. In 2012, a major spill accident occurred on the Huaihe River in Eastern China with 3 tons of benzene released to the river section 70 km upstream of a natural reserve. Two emergency measures were taken to minimize the impact of the accident on the natural reserve: 1) flow control by adjusting upstream sluices to delay the arrival of the contaminant plume at the reserve and 2) in-situ treatment using activated carbons to reduce the contaminant concentration. Here we develop a process-based mathematical model to analyze the monitoring data collected shortly after the accident, and explore not only how effective the adopted measures were over the incident but more importantly the mechanisms and critical conditions underlying the effectiveness of these measures. The model can be used as a tool for designing optimal management responses to similar spill accidents in regulated river systems, combining flow control and in-situ treatment.


Assuntos
Rios , Poluentes Químicos da Água , Benzeno , Carvão Vegetal , China , Monitoramento Ambiental
8.
Sci Total Environ ; 711: 134626, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812375

RESUMO

This study examined the profiles of antibiotic resistance genes (ARGs) in water and sediments from one large-scale freshwater pond farming system. A qPCR array was used to quantify ARGs (16S, Tetx, Tetw, TetG, Intll, and Sull) and microbial community structure was analyzed by 16S rRNA gene sequencing. A large number of ARGs (2 8 8) were detected. The ARG richness of the sediments was significantly higher than that of water and an average of 15 more genes were detected (p < 0.01). Sediment samples showed significantly higher taxonomic diversity and higher abundance of Gammaproteobacteria, Betaproteobacteria, and Flavobacteria. A significant correlation was observed between antibiotic resistance genes and breeding periods. The taxonomic diversity of the samples in ponds was significantly higher than that in ditch samples (p < 0.05), suggesting that pond farming systems could act as a local reservoir to spread ARGs into aquatic environments of rural communities.


Assuntos
Resistência Microbiana a Medicamentos , Genes Bacterianos , Antibacterianos , Aquicultura , Prevalência , RNA Ribossômico 16S
9.
Artigo em Inglês | MEDLINE | ID: mdl-30563099

RESUMO

To reveal the impact of soil moisture distributions on nitrous oxide (N2O) emissions from wet soils irrigated by sub-surface drip irrigation (SDI) with different surface soil wetting proportions, pot experiments were conducted, with surface irrigation (SI) as a control. Results indicated that irrigation triggered N2O pulsing effect in all SDI treatments, yet N2O values reduced with the decrease of surface soil wetting proportions of SDI irrigated soils, and the occurrence times were lagged. The peak N2O fluxes and the corresponding soil water filled pore space (WFPS), as well as the coefficients of determination (R²) of the exponential function between N2O fluxes and soil WFPS, decreased with the reduction of surface soil wetting proportions with SDI treatment, and from the central sub-region to the periphery sub-region. The pulse period contributed most to the reduction of N2O emissions in SDI compared to SI treatments and should be a key period for N2O emission mitigation. Over the whole experimental period, the area-weighted average cumulative N2O fluxes from SDI treatments were 82.3⁻157.3 mg N2O m-2 lower than those from SI treatment, with periphery sub-regions of R3 and R4 (radius of 19⁻27 cm and 28⁻36 cm from the emitter horizontally) contributing to more than 75.8% of the total N2O emission mitigation. These results suggest that reducing surface soil wetting proportions or the increments of topsoil WFPS for SDI irrigated soils is a promising strategy for N2O emission reduction.


Assuntos
Irrigação Agrícola/métodos , Óxido Nitroso/química , Solo/química , Água/química , Óxido Nitroso/análise
10.
Sci Total Environ ; 642: 1386-1395, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045519

RESUMO

To assess the quality of a water environment, an in-depth analysis of temporal patterns of contaminant concentrations in water body should be carried out based on unbiased water quality datasets. In this study, we developed a modified log-linear model to account for non-stationary seasonal variations of contaminant concentrations over multiple periods. The model was applied to analyze temporal changes of the Ammonia Nitrogen (AN) concentration at Middle Reaches of Huaihe River (MRHR) and two major tributaries, Shaying River (SR) and Guo River (GR). The modified model outperformed the original models and fitted the data well with Pearson correlation coefficients ranging from 0.67 to 0.86. Temporal patterns of AN concentrations, loads and sources were identified from 1998 to 2015 in connection to the implementation of Five-Year Plans (FYPs, policies for controlling water pollution) in the Huaihe River Basin (HRB). The results show that the AN concentration experienced a significant decrease. Since FYPs focused on controlling AN point sources, the proportion of AN loads derived from point sources decreased from 48-86% to 1-17% in the MRHR and from 66-92% to 2-56% in the SR and GR. However, rebounds of AN concentration occurred in the first year of each FYP period possibly due to discontinuity of the policy implementation over the transition between two consecutive FYPs. High AN concentration anomalies were found in flood seasons, related to pollution discharge beyond limits and/or irrational regulation of sluices. These results have implications for future pollution control policies in the HRB, particularly, the need to reduce the upper limits of contaminant loads for flood seasons, continuity of the policies implementation, reduction of non-point source pollution, rational sluice regulation and integrated pollution prevention programs. The developed model and approach are applicable to other polluted river basins to facilitate water quality assessment and evaluation of pollution control policies.

11.
Phys Rev E ; 93(6): 062612, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415325

RESUMO

We investigated the settling dynamics of irregularly shaped particles in a still fluid under a wide range of conditions with Reynolds numbers Re varying between 1 and 2000, sphericity ϕ and circularity c both greater than 0.5, and Corey shape factor (CSF) less than 1. To simulate the particle settling process, a modified lattice Boltzmann model combined with a turbulence module was adopted. This model was first validated using experimental data for particles of spherical and cubic shapes. For irregularly shaped particles, two different types of settling behaviors were observed prior to particles reaching a steady state: accelerating and accelerating-decelerating, which could be distinguished by a critical CSF value of approximately 0.7. The settling dynamics were analyzed with a focus on the projected areas and angular velocities of particles. It was found that a minor change in the starting projected area, an indicator of the initial particle orientation, would not strongly affect the settling velocity for low Re. Periodic oscillations developed for all simulated particles when Re>100. The amplitude of these oscillations increased with Re. However, the periods were not sensitive to Re. The critical Re that defined the transition between the steady and periodically oscillating behaviors depended on the inertia tensor. In particular, the maximum eigenvalue of the inertia tensor played a major role in signaling this transition in comparison to the intermediate and minimum eigenvalues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...