Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708403

RESUMO

Chronic myeloid leukemia (CML) is a malignant tumor caused by the abnormal proliferation of hematopoietic stem cells. Among a new series of acridone derivatives previously synthesized, it was found that the methoxybenzyl 5-nitroacridone derivative 8q has nanomolar cytotoxicity in vitro against human chronic myelogenous leukemia K562 cells. In order to further explore the possible anti-leukemia mechanism of action of 8q on K562 cells, a metabolomics and molecular biology study was introduced. It was thus found that most of the metabolic pathways of the G1 phase of K562 cells were affected after 8q treatment. In addition, a concentration-dependent accumulation of cells in the G1 phase was observed by cell cycle analysis. Western blot analysis showed that 8q significantly down-regulated the phosphorylation level of retinoblastoma-associated protein (Rb) in a concentration-dependent manner, upon 48 h treatment. In addition, 8q induced K562 cells apoptosis, through both mitochondria-mediated and exogenous apoptotic pathways. Taken together, these results indicate that 8q effectively triggers G1 cell cycle arrest and induces cell apoptosis in K562 cells, by inhibiting the CDK4/6-mediated phosphorylation of Rb. Furthermore, the possible binding interactions between 8q and CDK4/6 protein were clarified by homology modeling and molecular docking. In order to verify the inhibitory activity of 8q against other chronic myeloid leukemia cells, KCL-22 cells and K562 adriamycin-resistant cells (K562/ADR) were selected for the MTT assay. It is worth noting that 8q showed significant anti-proliferative activity against these cell lines after 48 h/72 h treatment. Therefore, this study provides new mechanistic information and guidance for the development of new acridones for application in the treatment of CML.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteína do Retinoblastoma/metabolismo , Apoptose/genética , Caspases/metabolismo , Proliferação de Células/genética , Cromatografia Líquida , Quinase 4 Dependente de Ciclina/química , Quinase 4 Dependente de Ciclina/genética , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Espectrometria de Massas , Metabolômica , Simulação de Acoplamento Molecular , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
2.
J Nat Prod ; 82(10): 2713-2720, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31599578

RESUMO

The new phthalideisoquinoline hemiacetal alkaloids (2-7) and the known analogues (1 and 8) were isolated from the bulbs of Corydalis decumbens. The new compounds were characterized by analysis of their NMR spectroscopic data, chemical degradation syntheses, X-ray crystallography, and comparison of experimental and calculated ECD data. All the isolates were screened in vitro for inhibitory activity of spontaneous calcium oscillations in primary cultured neocortical neurons. Compounds 1-3 and 5-7 were found to be active in the suppression of spontaneous calcium oscillations with IC50 values of 6.8, 5.6, 11.6, 10.2, 8.3, and 3.1 µM, respectively. It was also observed that the presence of hydroxy, methoxy, and ethoxy groups at the remote stereogenic center C-7' of some isolated phthalideisoquinoline hemiacetal alkaloids could alter the preferred conformation and invert the sign of optical rotation, rather than this resulting from configurational isomerism at C-1 or C-9, and that the 3J1,9 coupling constants of these analogues varied accordingly. For example, compounds 1 and 6 are levorotatory, despite these molecules having the same carbon skeleton and absolute configuration as (+)-egenine. This emphasizes the potential risk of incorrectly assigning absolute configuration based only on observed coupling constants or optical rotation when comparing the data of new compounds with literature values for known analogues, especially within this class of molecules.


Assuntos
Benzilisoquinolinas/isolamento & purificação , Sinalização do Cálcio/efeitos dos fármacos , Corydalis/química , Benzilisoquinolinas/química , Benzilisoquinolinas/farmacologia , Espectroscopia de Ressonância Magnética , Conformação Molecular
3.
PLoS One ; 10(4): e0124673, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909811

RESUMO

The current paradigm of cyclin-dependent kinase (CDK) regulation based on the well-established CDK2 has been recently expanded. The determination of CDK9 crystal structures suggests the requirement of an additional regulatory protein, such as human immunodeficiency virus type 1 (HIV-1) Tat, to exert its physiological functions. In most kinases, the exact number and roles of the cofactor metal ions remain unappreciated, and the repertoire has thus gained increasing attention recently. Here, molecular dynamics (MD) simulations were implemented on CDK9 to explore the functional roles of HIV-1 Tat and the second Mg2+ ion at site 1 (Mg12+). The simulations unveiled that binding of HIV-1 Tat to CDK9 not only stabilized hydrogen bonds (H-bonds) between ATP and hinge residues Asp104 and Cys106, as well as between ATP and invariant Lys48, but also facilitated the salt bridge network pertaining to the phosphorylated Thr186 at the activation loop. By contrast, these H-bonds cannot be formed in CDK9 owing to the absence of HIV-1 Tat. MD simulations further revealed that the Mg12+ ion, coupled with the Mg22+ ion, anchored to the triphosphate moiety of ATP in its catalytic competent conformation. This observation indicates the requirement of the Mg12+ ion for CDK9 to realize its function. Overall, the introduction of HIV-1 Tat and Mg12+ ion resulted in the active site architectural characteristics of phosphorylated CDK9. These data highlighted the functional roles of HIV-1 Tat and Mg12+ ion in the regulation of CDK9 activity, which contributes an important complementary understanding of CDK molecular underpinnings.


Assuntos
Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , HIV-1/metabolismo , Magnésio/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Ciclina T/química , Quinase 9 Dependente de Ciclina/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
4.
Eur J Med Chem ; 92: 145-55, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25549554

RESUMO

Sirtuins are protein deacylases with regulatory roles in metabolism and stress response. Functionalized tetrahydro-1H-pyrido[4,3-b]indoles were identified as preferential sirtuin 2 inhibitors, with in vitro inhibitory potencies in the low micromolar concentrations (IC50 3-4 µM) for the more promising candidates. The functional relevance of sirtuin inhibition was corroborated in western blots that showed hyperacetylation of p53 and α-tubulin in treated HepG2 and MDA-MB-231 cells. Molecular docking showed that the tetrahydropyridoindole scaffold was positioned in the NAD + pocket and the acetylated substrate channel of the sirtuin 2 protein by van der Waals/hydrophobic, H bonding and stacking interactions. Functionalized tetrahydropyridoindoles represent a novel class of sirtuin 2 inhibitors that could be further explored for its therapeutic potential.


Assuntos
Indóis/farmacologia , Piridinas/farmacologia , Sirtuína 2/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Sirtuína 2/metabolismo , Relação Estrutura-Atividade
5.
J Med Chem ; 57(14): 5904-18, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24960549

RESUMO

Curcumin is known to trigger ER-stress induced cell death of acute promyelocytic leukemic (APL) cells by intercepting the degradation of nuclear co-repressor (N-CoR) protein which has a key role in the pathogenesis of APL. Replacing the heptadienedione moiety of curcumin with a monocarbonyl cross-conjugated dienone embedded in a tetrahydrothiopyranone dioxide ring resulted in thiopyranone dioxides that were more resilient to hydrolysis and had greater growth inhibitory activities than curcumin on APL cells. Several members intercepted the degradation of misfolded N-CoR and triggered the signaling cascade in the unfolded protein response (UPR) which led to apoptotic cell death. Microarray analysis showed that genes involved in protein processing pathways that were germane to the activation of the UPR were preferentially up-regulated in treated APL cells, supporting the notion that the UPR was a consequential mechanistic pathway affected by thiopyranone dioxides. The Michael acceptor reactivity of the scaffold may have a role in exacerbating ER stress in APL cells.


Assuntos
Curcumina/análogos & derivados , Óxidos S-Cíclicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Inibidores de Proteases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Óxidos S-Cíclicos/síntese química , Óxidos S-Cíclicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Relação Estrutura-Atividade
6.
Acta Pharmacol Sin ; 35(1): 151-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24122012

RESUMO

AIM: To investigate the structural basis underlying potency and selectivity of a series of novel analogues of thieno[2,3-d]pyrimidin-4-yl hydrazones as cyclin-dependent kinase 4 (CDK4) inhibitors and to use this information for drug design strategies. METHODS: Three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis (CoMFA) were conducted on a training set of 48 compounds. Partial least squares (PLS) analysis was employed. External validation was performed with a test set of 9 compounds. RESULTS: The obtained 3D-QSAR model (q(2)=0.724, r(2)=0.965, r(2)pred=0.945) and 3D-QSSR model (q(2)=0.742, r(2)=0.923, r(2)pred=0.863) were robust and predictive. Contour maps with good compatibility to active binding sites provided insight into the potentially important structural features required to enhance activity and selectivity. The contour maps indicated that bulky groups at R1 position could potentially enhance CDK4 inhibitory activity, whereas bulky groups at R3 position have the opposite effect. Appropriate incorporation of bulky electropositive groups at R4 position is favorable and could improve both potency and selectivity to CDK4. CONCLUSION: These two models provide useful information to guide drug design strategies aimed at obtaining potent and selective CDK4 inhibitors.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/química , Pirimidinas/química , Pirimidinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Quinase 4 Dependente de Ciclina/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pirimidinas/metabolismo
7.
Sheng Li Xue Bao ; 63(6): 479-90, 2011 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-22193441

RESUMO

To investigate the role and mechanism of ceramide (Cer) regulation in alcohol-induced neuronal proliferation and the newborn neurons formation, we used sphingomyelin synthase 2 (predominant enzyme of Cer metabolism) knockout (SMS2(-/-)) and wild type (WT) female mice to establish the model of prenatal alcohol exposure. In 24 h after being given birth (postnatal day 0, P0), the offspring of model mice received blood sphingomyelin (SM) measurement with enzymatic method. On P0, P7, P14 and P30, the proliferation of granule cells in the dentate gyrus and newborn neurons were investigated with immunofluorescent labeling. The expression of protein kinase Cα (PKCα) in the hippocampus was tested with Western blot analysis. The results showed that the SM level of blood in SMS2(-/-) pups was significantly lower than that in WT pups. No matter in SMS2(-/-) or WT mice, the prenatal alcohol exposure down-regulated the SM levels in pups with dose-dependency. In both SMS2(-/-) and WT pups, the number of proliferative neurons and newborn neurons in the dentate gyrus gradually decreased with the growing age. Compared with the WT pups, SMS2(-/-) pups showed significantly more proliferative neurons and newborn neurons in the dentate gyrus. Notably, prenatal alcohol exposure dose-dependently increased proliferative neurons and newborn neurons in the dentate gyrus in both WT and SMS2(-/-) pups. The hippocampal expression of PKCα protein in SMS2(-/-) mice was lower than that in WT mice, and prenatal alcohol exposure could up-regulate the PKCα protein expression in both WT and SMS2(-/-) mice with dose dependency. These results suggest that alcohol exposure during pregnancy can induce the compensatory neural cell proliferation and the production of newborn neurons in offspring, and the Cer-ceramide-1-phosphate (C1P) pathway is involved in alcohol-induced neural cell proliferation. The activation of PKCα may be a key step to start the Cer-C1P pathway and up-regulate the alcohol-induced neural cell proliferation and the newborn neurons formation.


Assuntos
Ceramidas/metabolismo , Giro Denteado/citologia , Etanol/toxicidade , Neurônios/citologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Camundongos , Camundongos Knockout , Gravidez , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais , Transferases (Outros Grupos de Fosfato Substituídos)/genética
8.
Chemosphere ; 66(10): 1998-2010, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16962642

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a group of important persistent organic pollutants. In the present study, geometrical optimization and electrostatic potential calculations have been performed for all 209 PBDE congeners at the HF/6-31G level of theory. A number of statistically-based parameters have been obtained. Linear relationships between gas-chromatographic relative retention time (RRT), n-octanol/air partition coefficient (lgK(OA)), 298 K supercooled liquid vapour pressures (lgp(L)), Henry's law constant (lgH) and Ah receptor binding affinity (-lgRBA) of PBDEs and the structural descriptors have been established by multiple regression method. The result shows that the quantities derived from electrostatic potential V(s,max),V(s,min),Pi, Sigma V+(S), V-(S) , nu, sigma 2(tot), and N-(v), together with the molecular volume (Vmc) can be well used to express the quantitative structure-property relationships of PBDEs, which proves the general applicability of this parameter set to a great extent. Good predictive capabilities have also been demonstrated. Based on these equations, the predicted values have been presented for those PBDE congeners whose experimentally determined physicochemical properties are unavailable. The QSAR model for the Ah receptor binding affinity is relatively poor, which can be ascribed to the complexity of factors which affect biological activity and the limitations of the present parameter set in describing steric characters of the molecule.


Assuntos
Modelos Químicos , Bifenil Polibromatos/química , Relação Quantitativa Estrutura-Atividade , Algoritmos , Bifenil Polibromatos/análise , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...