Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 983625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275542

RESUMO

The emergence of deep neural networks has allowed the development of fully automated and efficient diagnostic systems for plant disease and pest phenotyping. Although previous approaches have proven to be promising, they are limited, especially in real-life scenarios, to properly diagnose and characterize the problem. In this work, we propose a framework which besides recognizing and localizing various plant abnormalities also informs the user about the severity of the diseases infecting the plant. By taking a single image as input, our algorithm is able to generate detailed descriptive phrases (user-defined) that display the location, severity stage, and visual attributes of all the abnormalities that are present in the image. Our framework is composed of three main components. One of them is a detector that accurately and efficiently recognizes and localizes the abnormalities in plants by extracting region-based anomaly features using a deep neural network-based feature extractor. The second one is an encoder-decoder network that performs pixel-level analysis to generate abnormality-specific severity levels. Lastly is an integration unit which aggregates the information of these units and assigns unique IDs to all the detected anomaly instances, thus generating descriptive sentences describing the location, severity, and class of anomalies infecting plants. We discuss two possible ways of utilizing the abovementioned units in a single framework. We evaluate and analyze the efficacy of both approaches on newly constructed diverse paprika disease and pest recognition datasets, comprising six anomaly categories along with 11 different severity levels. Our algorithm achieves mean average precision of 91.7% for the abnormality detection task and a mean panoptic quality score of 70.78% for severity level prediction. Our algorithm provides a practical and cost-efficient solution to farmers that facilitates proper handling of crops.

2.
Sci Rep ; 12(1): 8672, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606487

RESUMO

Fine segmentation labelling tasks are time consuming and typically require a great deal of manual labor. This paper presents a novel method for efficiently creating pixel-level fine segmentation labelling that significantly reduces the amount of necessary human labor. The proposed method utilizes easily produced multiple and complementary coarse labels to build a complete fine label via supervised learning. The primary label among the coarse labels is the manual label, which is produced with simple contours or bounding boxes that roughly encompass an object. All others coarse labels are complementary and are generated automatically using existing algorithms. Fine labels can be rapidly created during the supervised learning of such coarse labels. In the experimental study, the proposed technique achieved a fine label IOU (intersection of union) of 92% in segmenting our newly constructed bean field dataset. The proposed method also achieved 95% and 92% mean IOU when tested on publicly available agricultural CVPPP and CWFID datasets, respectively. Our proposed method of segmentation also achieved a mean IOU of 81% when it was tested on our newly constructed paprika disease dataset, which includes multiple categories.


Assuntos
Fenômenos Biológicos , Processamento de Imagem Assistida por Computador , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...