Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(17): 28112-28121, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710873

RESUMO

Optical phased array (OPA) beam scanners for light detection and ranging (LiDAR) are proposed by integrating polymer waveguides with superior thermo-optic effect and silicon nitride (SiN) waveguides exhibiting strong modal confinement along with high optical power capacity. A low connection loss of only 0.15 dB between the polymer and SiN waveguides was achieved in this work, enabling a low-loss OPA device. The polymer-SiN monolithic OPA demonstrates not only high optical throughput but also efficient beamforming and stable beam scanning. This novel integrative approach highlights the potential of leveraging heterogeneous photonic materials to develop advanced photonic integrated circuits with superior performance.

2.
Opt Express ; 31(3): 4760-4769, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785435

RESUMO

Polymer waveguide phase modulators (PMs) demonstrate high thermal confinement with outstanding thermo-optic properties and can provide stable low-power phase modulation in optical phased arrays (OPA). On the other hand, silicon nitride (SiN) waveguides produce stronger optical confinement with smaller waveguide core sizes than polymer waveguides and can handle high optical power without nonlinear effects. In this work, a high-performance PM was achieved by monolithic integration of a polymer waveguide and tapered SiN input and output waveguides. The integration of heterogeneous waveguide materials on a single substrate will enable the fabrication of efficient OPAs for advanced imaging, display, sensing, and communications applications.

3.
Polymers (Basel) ; 14(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683859

RESUMO

Polymer waveguide phase modulators exhibit stable low-power phase modulation owing to their exceptional thermal confinement and high thermo-optic effect, and thus, have the merit of thermal isolation between channels, which is crucial for an optical phased array (OPA) beam scanner device. In this work, a waveguide phase modulator was designed and fabricated based on a high-refractive-index fluorinated polyimide. The propagation loss of the polyimide waveguide and the temporal response of the phase modulator were characterized. Moreover, the transfer function of the phase modulator including multiple poles and zeros was obtained from the measured frequency response. The polyimide waveguide modulator device demonstrated a fast response time of 117 µs for 1 kHz input signal, however, for 1 mHz step-function input, it exhibited an additional 5% phase change in 5 s.

4.
Opt Express ; 30(2): 768-779, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209260

RESUMO

The phase error imposed in optical phased arrays (OPAs) for beam scanning LiDAR is unavoidable due to minute dimensional fluctuations that occur during the waveguide manufacturing process. To compensate for the phase error, in this study, a fast-running beamforming algorithm is developed based on the rotating element vector method. The proposed algorithm is highly suitable for OPA devices comprised of polymer waveguides, where thermal crosstalk between phase modulators is suppressed effectively, allowing for each phase modulator to be controlled independently. The beamforming speed is determined by the number of phase adjustments. Hence, by using the least square approximation for a 32-channel polymer waveguide OPA device the number of phase adjustments needed to complete beamforming was reduced and the beamforming time was shortened to 16 seconds.

5.
Sci Rep ; 11(1): 10576, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012058

RESUMO

Optical phased array (OPA) devices are being actively investigated to develop compact solid-state beam scanners, which are essential in fields such as LiDAR, free-space optical links, biophotonics, etc. Based on the unique nature of perfluorinated polymers, we propose a polymer waveguide OPA with the advantages of low driving power and high optical throughput. Unlike silicon photonic OPAs, the polymer OPAs enable sustainable phase distribution control during beam scanning, which reduces the burden of beamforming. Moreover, by incorporating a tunable wavelength laser comprising a polymer waveguide Bragg reflector, two-dimensional beam scanning is demonstrated, which facilitates the development of laser-integrated polymeric OPA beam scanners.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...