Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 7: e612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307863

RESUMO

A global path planning algorithm for unmanned surface vehicles (USVs) with short time requirements in large-scale and complex multi-island marine environments is proposed. The fast marching method-based path planning for USVs is performed on grid maps, resulting in a decrease in computer efficiency for larger maps. This can be mitigated by improving the algorithm process. In the proposed algorithm, path planning is performed twice in maps with different spatial resolution (SR) grids. The first path planning is performed in a low SR grid map to determine effective regions, and the second is executed in a high SR grid map to rapidly acquire the final high precision global path. In each path planning process, a modified inshore-distance-constraint fast marching square (IDC-FM2) method is applied. Based on this method, the path portions around an obstacle can be constrained within a region determined by two inshore-distance parameters. The path planning results show that the proposed algorithm can generate smooth and safe global paths wherein the portions that bypass obstacles can be flexibly modified. Compared with the path planning based on the IDC-FM2 method applied to a single grid map, this algorithm can significantly improve the calculation efficiency while maintaining the precision of the planned path.

2.
Sensors (Basel) ; 18(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322063

RESUMO

Unmanned Surface Vehicle (USV) is a novel multifunctional platform for ocean observation, and its heading and velocity control are essential and important for autonomous operation. A coupled heading and velocity controller is designed using backstepping technology for an USV called 'USBV' (Unmanned Surface Bathymetry Vehicle). The USBV is an underactuated catamaran, where the heading and velocity are controlled together by two thrusters at the stern. The three degrees-of-freedom equations are used for USBV's modeling, which is identified using experiment data. The identified model, with two inputs, induces heading and velocity tracking, which are coupled. Based on the model, a nonlinear controller for heading and velocity are acquired using backstepping technology. The stability of the controller is proved by Lyapunov theory under some assumptions. The verification is presented by lake and sea experiments.

3.
Sensors (Basel) ; 18(4)2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29659517

RESUMO

The Unmanned Surface Vehicle (USV) integrated with an acoustic modem is a novel mobile vehicle for data collection, which has an advantage in terms of mobility, efficiency, and collection cost. In the scenario of data collection, the USV is controlled autonomously along the planning trajectory and the data of underwater nodes are dynamically collected. In order to improve the efficiency of data collection and extend the life of the underwater nodes, a mobile data collection protocol for underwater nodes using the USV was proposed. In the protocol, the stop-and-wait ARQ transmission mechanism is adopted, where the duty cycle is designed considering the ratio between the sleep mode and the detection mode, and the transmission ratio is defined by the duty cycle, wake-up signal cycles, and USV’s speed. According to protocol, the evaluation index for energy consumption is constructed based on the duty cycle and the transmission ratio. The energy consumption of the protocol is simulated and analyzed using the mobile communication experiment data of USV, taking into consideration USV’s speed, data sequence length, and duty cycle. Optimized protocol parameters are identified, which in turn denotes the proposed protocol’s feasibility and effectiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...