Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1292012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179205

RESUMO

Previously, we reported that RhoA knockdown by morpholino antisense oligonucleotides (MOs), and enzymatic digestion of chondroitin sulfate proteoglycans (CSPGs) at the site of injury with chondroitinase ABC (ChABC), each can reduce retrograde neuronal apoptosis after spinal cord transection in the lamprey. To elucidate the mechanisms in neuronal survival and axon regeneration, we have investigated whether these two effects are additive in vivo. We used lampreys as a spinal cord injury model. MOs were used to knockdown RhoA and Chondroitinase ABC (ChABC) was used to digest CSPGs in vivo. Retrograde labeling, fluorochrome-labeled inhibitor of caspase activity (FLICA), immunohistochemistry, and western blots were performed to assess axonal regeneration, neuronal apoptotic signaling and Akt activation. Four treatment combinations were evaluated at 2-, 4-, and 10-weeks post-transection: (1) Control MO plus enzyme buffer (Ctrl); (2) control MO plus ChABC; (3) RhoA MO plus enzyme buffer (RhoA MO); and (4) RhoA MO plus ChABC (RhoA MO + ChABC). Consistent with our previous findings, at 4-weeks post-transection, there was less caspase activation in the ChABC and RhoA MO groups than in the Ctrl group. Moreover, the RhoA MO plus ChABC group had the best protective effect on identified reticulospinal (RS) neurons among the four treatment combinations. At 2 weeks post-transection, when axons have retracted maximally in the rostral stump and are beginning to regenerate back toward the lesion, the axon tips in the three treatment groups each were closer to the transection than those in the Ctr MO plus enzyme buffer group. Long-term axon regeneration also was evaluated for the large, individually identified RS neurons at 10 weeks post-transection by retrograde labeling. The percent regenerated axons in the RhoA MO plus ChABC group was greater than that in any of the other groups. Akt phosphorylation levels at threonine 308 was quantified in the identified RS neurons by western blots and immunofluorescence. The RhoA MO plus ChABC treatment enhanced pAkt-308 phosphorylation more than any of the other treatment groups. Although some of the effects of CSPGs are mediated through RhoA activation, some growth-inhibiting mechanisms of RhoA and CSPGs are independent of each other, so combinatorial therapies may be warranted.

2.
Cells ; 11(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954164

RESUMO

Axotomy in the CNS activates retrograde signals that can trigger regeneration or cell death. Whether these outcomes use different injury signals is not known. Local protein synthesis in axon tips plays an important role in axon retraction and regeneration. Microarray and RNA-seq studies on cultured mammalian embryonic or early postnatal peripheral neurons showed that axon growth cones contain hundreds to thousands of mRNAs. In the lamprey, identified reticulospinal neurons vary in the probability that their axons will regenerate after axotomy. The bad regenerators undergo early severe axon retraction and very delayed apoptosis. We micro-aspirated axoplasms from 10 growing, 9 static and 5 retracting axon tips of spinal cord transected lampreys and performed single-cell RNA-seq, analyzing the results bioinformatically. Genes were identified that were upregulated selectively in growing (n = 38), static (20) or retracting tips (18). Among them, map3k2, csnk1e and gtf2h were expressed in growing tips, mapk8(1) was expressed in static tips and prkcq was expressed in retracting tips. Venn diagrams revealed more than 40 components of MAPK signaling pathways, including jnk and p38 isoforms, which were differentially distributed in growing, static and/or retracting tips. Real-time q-PCR and immunohistochemistry verified the colocalization of map3k2 and csnk1e in growing axon tips. Thus, differentially regulated MAPK and circadian rhythm signaling pathways may be involved in activating either programs for axon regeneration or axon retraction and apoptosis.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Axônios/metabolismo , Lampreias/genética , Mamíferos , Regeneração Nervosa/genética , RNA-Seq , Transdução de Sinais , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Transcriptoma/genética
3.
Front Mol Neurosci ; 15: 918871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832392

RESUMO

Axon regrowth after spinal cord injury (SCI) is inhibited by several types of inhibitory extracellular molecules in the central nervous system (CNS), including chondroitin sulfate proteoglycans (CSPGs), which also are components of perineuronal nets (PNNs). The axons of lampreys regenerate following SCI, even though their spinal cords contain CSPGs, and their neurons are enwrapped by PNNs. Previously, we showed that by 2 weeks after spinal cord transection in the lamprey, expression of CSPGs increased in the lesion site, and thereafter, decreased to pre-injury levels by 10 weeks. Enzymatic digestion of CSPGs in the lesion site with chondroitinase ABC (ChABC) enhanced axonal regeneration after SCI and reduced retrograde neuronal death. Lecticans (aggrecan, versican, neurocan, and brevican) are the major CSPG family in the CNS. Previously, we cloned a cDNA fragment that lies in the most conserved link-domain of the lamprey lecticans and found that lectican mRNAs are expressed widely in lamprey glia and neurons. Because of the lack of strict one-to-one orthology with the jawed vertebrate lecticans, the four lamprey lecticans were named simply A, B, C, and D. Using probes that distinguish these four lecticans, we now show that they all are expressed in glia and neurons but at different levels. Expression levels are relatively high in embryonic and early larval stages, gradually decrease, and are upregulated again in adults. Reductions of lecticans B and D are greater than those of A and C. Levels of mRNAs for lecticans B and D increased dramatically after SCI. Lectican D remained upregulated for at least 10 weeks. Multiple cells, including glia, neurons, ependymal cells and microglia/macrophages, expressed lectican mRNAs in the peripheral zone and lesion center after SCI. Thus, as in mammals, lamprey lecticans may be involved in axon guidance and neuroplasticity early in development. Moreover, neurons, glia, ependymal cells, and microglia/macrophages, are responsible for the increase in CSPGs during the formation of the glial scar after SCI.

5.
Front Cell Dev Biol ; 9: 653638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842481

RESUMO

Paralysis following spinal cord injury (SCI) is due to failure of axonal regeneration. It is believed that axon growth is inhibited by the presence of several types of inhibitory molecules in central nervous system (CNS), including the chondroitin sulfate proteoglycans (CSPGs). Many studies have shown that digestion of CSPGs with chondroitinase ABC (ChABC) can enhance axon growth and functional recovery after SCI. However, due to the complexity of the mammalian CNS, it is still unclear whether this involves true regeneration or only collateral sprouting by uninjured axons, whether it affects the expression of CSPG receptors such as protein tyrosine phosphatase sigma (PTPσ), and whether it influences retrograde neuronal apoptosis after SCI. In the present study, we assessed the roles of CSPGs in the regeneration of spinal-projecting axons from brainstem neurons, and in the process of retrograde neuronal apoptosis. Using the fluorochrome-labeled inhibitor of caspase activity (FLICA) method, apoptotic signaling was seen primarily in those large, individually identified reticulospinal (RS) neurons that are known to be "bad-regenerators." Compared to uninjured controls, the number of all RS neurons showing polycaspase activity increased significantly at 2, 4, 8, and 11 weeks post-transection (post-TX). ChABC application to a fresh TX site reduced the number of polycaspase-positive RS neurons at 2 and 11 weeks post-TX, and also reduced the number of active caspase 3-positive RS neurons at 4 weeks post-TX, which confirmed the beneficial role of ChABC treatment in retrograde apoptotic signaling. ChABC treatment also greatly promoted axonal regeneration at 10 weeks post-TX. Correspondingly, PTPσ mRNA expression was reduced in the perikaryon. Previously, PTPσ mRNA expression was shown to correlate with neuronal apoptotic signaling at 2 and 10 weeks post-TX. In the present study, this correlation persisted after ChABC treatment, which suggests that PTPσ may be involved more generally in signaling axotomy-induced retrograde neuronal apoptosis. Moreover, ChABC treatment caused Akt activation (pAkt-308) to be greatly enhanced in brain post-TX, which was further confirmed in individually identified RS neurons. Thus, CSPG digestion not only enhances axon regeneration after SCI, but also inhibits retrograde RS neuronal apoptosis signaling, possibly by reducing PTPσ expression and enhancing Akt activation.

6.
Front Neurosci ; 14: 580692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250705

RESUMO

We previously reported that spinal cord transection (TX) in the lamprey causes mRNA to accumulate in the injured tips of large reticulospinal (RS) axons. We sought to determine whether this mRNA accumulation results from phosphorylation and transport of retrograde signals, similar to what has been reported in mammalian peripheral nerve. Extracellular signal-regulated protein kinase (Erk), mediates the neurite outgrowth-promoting effects of many neurotrophic factors. To assess the role of Erk in retrograde signaling of RS axon injury, we used immunoblot and immunohistochemistry to determine the changes in phosphorylated Erk (p-Erk) in the spinal cord after spinal cord TX. Immunostaining for p-Erk increased within axons and local cell bodies, most heavily within the 1-2 mm closest to the TX site, at between 3 and 6 h post-TX. In axons, p-Erk was concentrated in 3-5 µm granules that became less numerous with distance from the TX. The retrograde molecular motor dynein colocalized with p-Erk, but vimentin, which in peripheral nerve was reported to participate with p-Erk as part of a retrograde signal complex, did not colocalize with p-Erk, even though vimentin levels were elevated post-TX. The results suggest that p-Erk, but not vimentin, may function as a retrograde axotomy signal in lamprey central nervous system neurons, and that this signal may induce transcription of mRNA, which is then transported down the axon to its injured tip.

7.
Front Cell Neurosci ; 14: 61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265663

RESUMO

Traumatic spinal cord injury (SCI) results in persistent functional deficits due to the lack of axon regeneration within the mammalian CNS. After SCI, chondroitin sulfate proteoglycans (CSPGs) inhibit axon regrowth via putative interactions with the LAR-family protein tyrosine phosphatases, PTPσ and LAR, localized on the injured axon tips. Unlike mammals, the sea lamprey, Petromyzon marinus, robustly recovers locomotion after complete spinal cord transection (TX). Behavioral recovery is accompanied by heterogeneous yet predictable anatomical regeneration of the lamprey's reticulospinal (RS) system. The identified RS neurons can be categorized as "good" or "bad" regenerators based on the likelihood that their axons will regenerate. Those neurons that fail to regenerate their axons undergo a delayed form of caspase-mediated cell death. Previously, this lab reported that lamprey PTPσ mRNA is selectively expressed in "bad regenerator" RS neurons, preceding SCI-induced caspase activation. Consequently, we hypothesized that PTPσ deletion would reduce retrograde cell death and promote axon regeneration. Using antisense morpholino oligomers (MOs), we knocked down PTPσ expression after TX and assessed the effects on axon regeneration, caspase activation, intracellular signaling, and behavioral recovery. Unexpectedly, PTPσ knockdown significantly impaired RS axon regeneration at 10 weeks post-TX, primarily due to reduced long-term neuron survival. Interestingly, cell loss was not preceded by an increase in caspase or p53 activation. Behavioral recovery was largely unaffected, although PTPσ knockdowns showed mild deficits in the recovery of swimming distance and latency to immobility during open field swim assays. Although the mechanism underlying the cell death following TX and PTPσ knockdown remains unknown, this study suggests that PTPσ is not a net negative regulator of long tract axon regeneration in lampreys.

8.
Neurobiol Dis ; 98: 25-35, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27888137

RESUMO

Paralysis following spinal cord injury (SCI) is due to interruption of axons and their failure to regenerate. It has been suggested that the small GTPase RhoA may be an intracellular signaling convergence point for several types of growth-inhibiting extracellular molecules. Even if this is true in vitro, it is not clear from studies in mammalian SCI, whether the effects of RhoA manipulations on axon growth in vivo are due to a RhoA-mediated inhibition of true regeneration or only of collateral sprouting from spared axons, since work on SCI generally is performed with partial injury models. RhoA also has been implicated in local neuronal apoptosis after SCI, but whether this reflects an effect on axotomy-induced cell death or an effect on other pathological mechanisms is not known. In order to resolve these ambiguities, we studied the effects of RhoA knockdown in the sea lamprey central nervous system (CNS), where after complete spinal cord transection (TX), robust but incomplete regeneration of large axons belonging to individually identified reticulospinal (RS) neurons occurs, and where some RS neurons show unambiguous delayed retrograde apoptosis after axotomy. RhoA protein was detected in neurons and axons of the lamprey brain and spinal cord, and its expression was increased post-TX. Knockdown of RhoA in vivo by retrogradely-delivered morpholino antisense oligonucleotides (MOs) to the RS neurons significantly reduced retrograde apoptosis signaling in identified RS neurons post-SCI, as indicated by Fluorochrome Labeled Inhibitor of Caspases (FLICA) in brain wholemounts. In individual RS neurons, the reduction of caspase activation by RhoA knockdown began at 2weeks post-TX and was still seen at 8weeks. RhoA knockdown slowed axon retraction and possibly increased early axon regeneration in the proximal stump. The number of axons regenerating beyond the lesion more than 5mm at 10weeks post-TX also was increased. Thus RhoA knockdown both enhanced true axon regeneration and inhibited retrograde apoptosis signaling after SCI.


Assuntos
Morte Celular/fisiologia , Proteínas de Peixes/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Regeneração da Medula Espinal/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Caspases/metabolismo , Modelos Animais de Doenças , Proteínas de Peixes/genética , Técnicas de Silenciamento de Genes , Crescimento Neuronal/fisiologia , Neurônios/patologia , Petromyzon , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Fatores de Tempo , Proteína rhoA de Ligação ao GTP/genética
9.
J Comp Neurol ; 524(17): 3614-3640, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27120118

RESUMO

Polyribosomes, mRNA, and other elements of translational machinery have been reported in peripheral nerves and in elongating injured axons of sensory neurons in vitro, primarily in growth cones. Evidence for involvement of local protein synthesis in regenerating central nervous system (CNS) axons is less extensive. We monitored regeneration of back-labeled lamprey spinal axons after spinal cord transection and detected mRNA in axon tips by in situ hybridization and microaspiration of their axoplasm. Poly(A)+mRNA was present in the axon tips, and was more abundant in actively regenerating tips than in static or retracting ones. Target-specific polymerase chain reaction (PCR) and in situ hybridization revealed plentiful mRNA for the low molecular neurofilament subunit and ß-tubulin, but very little for ß-actin, consistent with the morphology of their tips, which lack filopodia and lamellipodia. Electron microscopy showed ribosomes/polyribosomes in the distal parts of axon tips and in association with vesicle-like membranes, primarily in the tip. In one instance, there were structures with the appearance of rough endoplasmic reticulum. Immunohistochemistry showed patches of ribosomal protein S6 positivity in a similar distribution. The results suggest that local protein synthesis might be involved in the mechanism of axon regeneration in the lamprey spinal cord. J. Comp. Neurol. 524:3614-3640, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Axônios/metabolismo , Lampreias/metabolismo , Regeneração Nervosa/fisiologia , Biossíntese de Proteínas/fisiologia , Medula Espinal/metabolismo , Actinas/metabolismo , Animais , Axônios/ultraestrutura , Western Blotting , Clonagem Molecular , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Retículo Endoplasmático Rugoso/metabolismo , Retículo Endoplasmático Rugoso/ultraestrutura , Proteínas de Peixes/metabolismo , Proteínas de Peixes/ultraestrutura , Hibridização In Situ , Microscopia Eletrônica , Proteínas de Neurofilamentos/metabolismo , Reação em Cadeia da Polimerase , Polirribossomos/metabolismo , Polirribossomos/ultraestrutura , RNA Mensageiro/metabolismo , Proteína S6 Ribossômica/metabolismo , Proteína S6 Ribossômica/ultraestrutura , Medula Espinal/ultraestrutura , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
10.
PLoS One ; 10(9): e0137670, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26366578

RESUMO

The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Previous studies have suggested that, unlike developing axons in mammal, the tips of regenerating axons in lamprey spinal cord are simple in shape, packed with neurofilaments (NFs), and contain very little F-actin. Thus it has been proposed that regeneration of axons in the central nervous system of mature vertebrates is not based on the canonical actin-dependent pulling mechanism of growth cones, but involves an internal protrusive force, perhaps generated by the transport or assembly of NFs in the distal axon. In order to assess this hypothesis, expression of NFs was manipulated by antisense morpholino oligonucleotides (MO). A standard, company-supplied MO was used as control. Axon retraction and regeneration were assessed at 2, 4 and 9 weeks after MOs were applied to a spinal cord transection (TX) site. Antisense MO inhibited NF180 expression compared to control MO. The effect of inhibiting NF expression on axon retraction and regeneration was studied by measuring the distance of axon tips from the TX site at 2 and 4 weeks post-TX, and counting the number of reticulospinal neurons (RNs) retrogradely labeled by fluorescently-tagged dextran injected caudal to the injury at 9 weeks post-TX. There was no statistically significant effect of MO on axon retraction at 2 weeks post-TX. However, at both 4 and 9 weeks post-TX, inhibition of NF expression inhibited axon regeneration.


Assuntos
Axônios/fisiologia , Proteínas de Peixes/fisiologia , Filamentos Intermediários/metabolismo , Lampreias/fisiologia , Regeneração Nervosa/fisiologia , Proteínas de Neurofilamentos/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Medula Espinal/fisiologia , Animais , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/metabolismo , Filamentos Intermediários/fisiologia , Lampreias/metabolismo , Proteínas de Neurofilamentos/antagonistas & inibidores , Proteínas de Neurofilamentos/metabolismo , Imagem Óptica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
11.
Brain Res ; 1370: 16-33, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21081119

RESUMO

In mammals, there are three neurofilament (NF) subunits (NF-L, NF-M, and NF-H), but it was thought that only a single NF, NF180, exists in lamprey. However, NF180 lacked the ability to self-assemble, suggesting that like mammalian NFs, lamprey NFs are heteropolymers, and that additional NF subunits may exist. The present study provides evidence for the existence of a lamprey NF-L homolog (L-NFL). Genes encoding two new NF-M isoforms (NF132 and NF95) also have been isolated and characterized. With NF180, this makes three NF-M-like isoforms. In situ hybridization showed that all three newly cloned NFs are expressed in spinal cord neurons and in spinal-projecting neurons of the brainstem. Like NF180, there were no KSP multiphosphorylation repeat motifs in the tail regions of NF132 or NF95. NF95 was highly identical to homologous parts of NF180, sharing 2 common pieces of DNA with it. Northern blots suggested that NF95 may be expressed at very low levels in older larvae. The presence of L-NFL in lamprey CNS may support the hypothesis that as in mammals, NFs in lamprey are obligate heteropolymers, in which NF-L is a required subunit.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas de Neurofilamentos/isolamento & purificação , Petromyzon , Citoesqueleto de Actina/química , Citoesqueleto de Actina/fisiologia , Animais , Sistema Nervoso Central/química , Vias Eferentes/química , Vias Eferentes/citologia , Vias Eferentes/fisiologia , Proteínas de Neurofilamentos/química , Proteínas de Neurofilamentos/genética , Petromyzon/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Medula Espinal/química , Medula Espinal/citologia , Medula Espinal/fisiologia
12.
J Comp Neurol ; 515(3): 295-312, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19425080

RESUMO

Regenerative failure of spinal axons is commonly ascribed to signaling of F-actin depolymerization and growth cone collapse by molecules such as the myelin-associated growth inhibitors. cAMP is thought to promote regeneration at least in part by neutralizing this effect, either by direct action in the growth cone or indirectly by transcriptional mechanisms. In vivo evidence for this is based mainly on partial lesion studies in which it is sometimes difficult to distinguish regeneration of injured axons from collateral sprouting by uninjured axons. Moreover, previous observations on fixed lamprey central nervous system (CNS) suggested that regeneration may not involve growth cones. To distinguish actively growing axons from static or retracting ones, fluorescently labeled large reticulospinal axons were imaged in the living, transected lamprey cord with and without application of cAMP analogs and then studied by 2-photon microscopy. Axon tip movements over 2-48-hour intervals indicated: 1) regeneration was intermittent; 2) cAMP decreased initial axon retraction and increased subsequent regeneration up to 11-fold; 3) the increase in regeneration was due to an increase in velocity of axon growth, but not in the time spent in forward movement; 4) tips of actively regenerating axons were more sharply contoured than static tips but no filopodia or lamellipodia were observed, even in db-cAMP; and 5) during active growth, axon tips contained vesicle-like inclusions and were highly immunoreactive for neurofilaments. Staining for F-actin and microtubules was variable and F-actin was not concentrated at the leading edge. Thus, cAMP accelerates regeneration of lamprey spinal axons without inducing formation of growth cones.


Assuntos
Axônios/fisiologia , AMP Cíclico/metabolismo , Cones de Crescimento/fisiologia , Regeneração Nervosa/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Células Cultivadas , AMP Cíclico/farmacologia , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/ultraestrutura , Lampreias , Microtúbulos/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Pseudópodes/metabolismo , Medula Espinal/citologia , Medula Espinal/patologia
13.
J Comp Neurol ; 483(4): 403-14, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15700276

RESUMO

We have previously hypothesized that regeneration of axons after spinal cord injury in the lamprey may involve assembly and transport of neurofilaments (NFs) into the growing tip. A single NF, NF-180, has been cloned in this laboratory and until now was thought to be the only NF subunit in lamprey nervous system. However, homopolymerization of NF-180 has not been observed either in experiments on transfected cells or in self-assembly tests in vitro. Forty-three monoclonal antibodies designated as LCM series were generated previously against cytoskeletal proteins of the lamprey nervous system. Seven LCMs were NF specific, and five were keratin specific, as demonstrated by immunohistochemistry. In the present study, one antibody, LCM40, selectively labeled axons in immunohistochemical sections and recognized a single 50-kDa protein in Western blots. Other neuron-specific LCMs and anti-NF antibodies, e.g., LCM39, recognized a known NF subunit, NF-180. Two-dimensional (2-D) gel electrophoresis was employed to separate otherwise indistinguishable individual cytoskeletal proteins. Western blot analysis with an antibody (IFA) that selectively labels all known intermediate filaments indicated that this 50-kDa protein is an intermediate filament (IF). The new protein was incorporated into IF polymers in vitro. Immunoelectron microscopy confirmed that neuronal IFs contain this novel protein. These results suggest that the 50-kDa protein is a previously unrecognized neuronal IF subunit in the lamprey.


Assuntos
Proteínas de Filamentos Intermediários/classificação , Proteínas de Neurofilamentos/isolamento & purificação , Animais , Anticorpos/classificação , Anticorpos/metabolismo , Axônios/metabolismo , Axônios/ultraestrutura , Western Blotting/métodos , Proteínas do Citoesqueleto/metabolismo , Eletroforese em Gel Bidimensional/métodos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imuno-Histoquímica/métodos , Proteínas de Filamentos Intermediários/imunologia , Lampreias , Larva , Microscopia Imunoeletrônica/métodos , Peso Molecular , Proteínas de Neurofilamentos/classificação , Proteínas de Neurofilamentos/imunologia , Mapeamento de Interação de Proteínas/métodos , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura
14.
Neurorehabil Neural Repair ; 19(1): 46-57, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15673843

RESUMO

BACKGROUND: The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Although the growing tips of developing axons in lamprey have not been described, in all species studied, growth cones are complex in shape, consisting of a lamellipodium and filopodia, rich in F-actin and lacking neurofilaments (NF). By contrast, static immunohistochemical and electron microscopic observations of fixed tissue suggested that the tips of regenerating lamprey spinal axons are simple in shape, densely packed with NF, but contain very little F-actin. Thus, it has been proposed that regeneration of axons in the CNS of mature animals is not based on the canonical pulling mechanism of growth cones but involves an internal protrusive force, perhaps generated by the transport and assembly of NF. To eliminate the possibility that these histological features are due to fixation artifact, fluorescently labeled regenerating axon tips were imaged live. METHODS: Spinal cords were transected, and after 0 to 10 weeks, the CNS was isolated in lamprey Ringer at 5 degrees C to 12 degrees C and the large reticulospinal axons were microinjected with fluorescent tracers. The proximal axon tips were imaged with a fluorescence dissecting microscope repeatedly over 2 to 5 days and photographed with confocal microscopy. Experiments were also performed through a dorsal incision in the living animal. Axon tips were microinjected as above or retrogradely labeled with tracer applied to the transection site and photographed through the fluorescence dissecting scope or with two-photon microscopy. The spinal cords were then fixed and processed for wholemount NF immunohistochemistry. RESULTS: The living axon tips were simple in shape, not significantly different from those in fixed spinal cords, and filled with NF. In isolated CNS preparations, very little axon retraction and no regeneration was observed. In the living animal, rapid retraction, up to 3 mm/day, was seen during the 1st few days posttransection. At more than 2 weeks posttransection, some fibers showed regeneration of up to 35 microm/day. CONCLUSIONS: 1) The tips of regenerating lamprey axons are simple in shape and filled with NF. 2) Both axon retraction and axon extension are active processes, requiring factors present in the living animal that are missing in the isolated CNS.


Assuntos
Axônios/fisiologia , Microscopia de Fluorescência/métodos , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiologia , Actinas/fisiologia , Animais , Cones de Crescimento/fisiologia , Lampreias , Proteínas de Neurofilamentos/fisiologia , Pseudópodes/fisiologia , Medula Espinal/citologia
15.
J Comp Neurol ; 471(2): 188-200, 2004 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-14986312

RESUMO

Regenerating axon tips in transected lamprey spinal cord contain dense accumulations of neurofilaments (NFs), suggesting that NFs may play a role in the mechanism of axonal regeneration. Compared with heteropolymeric assemblies of NF triplet proteins in mammals, NF in lampreys has been thought to contain only a single subunit (NF180). This would imply that NF180 self-assembles, which would be important for manipulating its expression in studies of axonal regeneration. In order to study the possible role of NF in process outgrowth and to determine whether NF180 can self-assemble, its gene was transfected into mammalian and fish cell lines that either contain or lack vimentin. In transfected NIH3T3 cells, NF180 was poorly phosphorylated and its expression did not alter the length or number of cell processes. Nor did it appear to form typical intermediate filaments, suggesting that it may not self-assemble. NF180 also did not form typical filaments in SW13cl cells that either possessed or lacked vimentin, nor in transfected fish cells that were cultured at 18 degrees C. In vitro, NF180 could not self-assemble but interacted with NF-L to interrupt its self-assembly. When cotransfected with rat NF-L into SW13c1.2vim(-) cells, NF180 did form thick, rod-like filamentous structures on immunofluorescence. More typical NFs were observed when NF180 was cotransfected with both NF-L and NF-M. Thus, NF180 cannot self-assemble but appears to require one or more additional elements for incorporation into NFs.


Assuntos
Lampreias/fisiologia , Proteínas de Neurofilamentos/metabolismo , Subunidades Proteicas/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Peixes , Humanos , Camundongos , Células NIH 3T3 , Proteínas de Neurofilamentos/análise , Processamento de Proteína Pós-Traducional
16.
J Neurochem ; 85(2): 378-86, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12675914

RESUMO

Previously a distinct D1-like dopamine receptor (DAR) that selectively couples to phospholipase C/phosphatidylinositol (PLC/PI) was proposed. However, lack of a selective agonist has limited efforts aimed at characterizing this receptor. We characterized the in vitro and in vivo effects of SKF83959 in regulating PI metabolism. SKF83959 stimulates (EC50, 8 micro m) phosphatidylinositol 4,5-biphosphate hydrolysis in membranes of frontal cortex (FC) but not in membranes from PC12 cells expressing classical D1A DARs. Stimulation of FC PI metabolism was attenuated by the D1 antagonist, SCH23390, indicating that SKF83959 activates a D1-like DAR. The PI-linked DAR is located in hippocampus, cerebellum, striatum and FC. Most significantly, administration of SKF83959 induced accumulations of IP3 in striatum and hippocampus. In contrast to other D1 DAR agonists, SKF83959 did not increase cAMP production in brain or in D1A DAR-expressing PC12 cell membranes. However, SKF83959 inhibited cAMP elevation elicited by the D1A DAR agonist, SKF81297, indicating that the compound is an antagonist of the classical D1A DAR. Lastly, we demonstrated that SKF83959 enhances [35S]guanosine 5'-O-(3-thiotriphosphate) binding to membrane Galphaq and Galphai proteins, suggesting that PI stimulation is mediated by activation of these guanine nucleotide-binding regulatory proteins. Results indicate that SKF83959 is a selective agonist for the PI-linked D1-like DAR, providing a unique tool for investigating the functions of this brain D1 DAR subtype.


Assuntos
2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Encéfalo/metabolismo , Fosfatidilinositóis/metabolismo , Receptores de Dopamina D1/efeitos dos fármacos , Adenilil Ciclases/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Animais , Benzazepinas/farmacologia , Ligação Competitiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Flupentixol/farmacologia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Hidrólise/efeitos dos fármacos , Masculino , Células PC12 , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...