Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(13): 24062-24071, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225075

RESUMO

A sensitive DC magnetic field sensor is constructed by measuring the signal-to-noise ratio of an AC-modulated magnetic field at a particular frequency from an optical whispering gallery mode microcapillary resonator. The sensing element consists of an optical whispering gallery mode microcapillary resonator bonded to a magnetostrictive material that enables it to respond to external magnetic fields. A DC magnetic field sensitivity of 0.1703dB/Oe and a linear detection range from 4.8Oe to 65.7Oe are realized under an AC modulation field of 168.1kHz in the unshielded environment at room temperature. To our best knowledge, this sensitivity is about 2.3 times of the maximum sensitivity of other DC magnetic field sensors based on magnetic fluid or magnetostrictive material integrated fiber systems that use the dissipative sensing scheme. Furthermore, the sensor can operate at a stable temperature in the range of [-11∼45]°C, as long as the modulation frequency of the AC-modulation field is adjusted according to the ambient temperature. This sensor provides us with a novel DC magnetic field sensing scheme, which may play a role in industrial fields related to current and position detection in the future.

2.
ACS Appl Mater Interfaces ; 14(18): 21668-21676, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471960

RESUMO

The current-induced magnetization switching and damping-like field in Pt/(Co/Pt)/PtMn trilayer films prepared with and without an in situ in-plane field of 600 Oe have been studied systematically. In the presence of the in situ field, a small in-plane bias field (HEB) is observed for films with PtMn thickness ≥5 nm, while there is no observable HEB for PtMn thickness ≤3 nm. Nevertheless, a field-free switching of perpendicular magnetization of Co/Pt is observed for all the films with the PtMn thickness of 1-7 nm. On the other hand, without the presence of the in situ field, HEB and field-free switching are not seen. Furthermore, the damping-like fields (HDL) are much enhanced in the presence of the in situ field, and the increasement can be up to 47%. We further revealed that the spin current is mainly from the Pt layer, while the noncollinear spin configuration at the interface caused by the in situ in-plane field may play a role in the HDL enhancement. Micromagnetic simulations indicate that the canting of antiferromagnet PtMn spins plays an important role in the field-free switching. Our findings clarify the source of spin current in the trilayer films and provide an easier approach to field-free switching and HDL enhancement for future low-power spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...