Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37429584

RESUMO

Hair follicle stem cells (HFSCs) are an important basis for hair follicle morphogenesis and hair cycle growth. This cell type also represents an excellent model for studying the gene function and molecular regulation of the hair growth cycle, including proliferation, differentiation, and apoptosis. Basically, the functional investigation of hair growth-regulating genes demands a sufficient amount of HFSCs. However, efficient propagation of HFSCs in goats is a challenging process under the current culture conditions. Here, we investigated the effect of four components, including the Rho-associated protein kinase (ROCK) inhibitor Y-27632, leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and vitamin C, on cell growth and pluripotency in the basal culture medium (DMEM/F12 supplemented with 2% fetal bovine serum). We found that adding Y-27632, LIF, and bFGF independently increased the proliferation and pluripotency of goat HFSCs (gHFSCs), with Y-27632 having the most significant effect (P < 0.001). Fluorescence-activated cell sorting of the cell cycle revealed that Y-27632 promoted gHFSC proliferation by inducing the cell cycle from S to G2/M phase (P < 0.05). We further demonstrated that gHFSCs displayed superior proliferative capacity, clone-forming ability, and differentiation potential in the combined presence of Y-27632 (10 µM) and bFGF (10 ng/mL). We termed this novel culture condition as gHFEM, which stands for goat Hair Follicle Enhanced Medium. Taken together, these results indicate that gHFEM is an optimal condition for in vitro culture of gHFSCs, which will subsequently facilitate the study of HF growth and biology.


Hair follicle stem cells (HFSCs) are indispensable for skin repair, hair growth, development, and regeneration. One major challenge in primary cell culture is achieving efficient growth while maintaining stemness to achieve a high yield. Various factors, including the Rho-associated protein kinase inhibitor Y-27632, leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and vitamin C are known to regulate the growth of cells. Here, we investigated the optimal concentrations of Y-27632, LIF, bFGF, and vitamin C for promoting goat HFSCs (gHFSCs) proliferation and pluripotency. We further found that the combination of Y-27632 and bFGF exhibited optimal growth conditions. These findings offer valuable insights into the factors affecting gHFSC culture and potential applications for studying the cellular and molecular mechanisms underlying periodic HF growth and gene function associated with HF development.


Assuntos
Cabras , Folículo Piloso , Animais , Cabras/genética , Amidas/metabolismo , Células-Tronco
2.
DNA Cell Biol ; 41(2): 190-201, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35007429

RESUMO

Hair follicle stem cells (HFSCs) play a significant role in hair development. miR-1 has been reported as an important regulatory factor that affects hair follicle growth and development, but its regulatory mechanism on HFSC development remains unknown. In this study, the molecular mechanism of miR-1 in regulating HFSC proliferation and differentiation was investigated. High-throughput RNA-seq and integrated analysis were performed to identify differentially transcribed mRNAs and microRNAs (miRNAs) in HFSCs co-cultured with dermal papilla cells (named dHFSCs) and control HFSCs. We then determined the molecular function of miR-1 in HFSCs. Compared with HFSCs, 13 differentially transcribed miRNAs were identified in dHFSCs. The in vitro results indicated that the overtranscription of miR-1 inhibited HFSC proliferation, but enhanced HFSC differentiation by targeting IGF1R and LEF1 genes. This study provides new insights into the molecular mechanisms of HFSC development. Approval ID (2014ZX08008-002).


Assuntos
Folículo Piloso
3.
Animals (Basel) ; 11(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34827922

RESUMO

Extracellular vesicles (EVs), which exist in the follicular fluid of ruminant ovaries, are considered as cargo carriers for the transfer of biomolecules to recipient cells. However, the functions and changes in EVs in antral follicles remain ambiguous. In the present study, we isolated and characterized EVs from goat follicular fluid by means of differential ultracentrifugation and Western blotting of marker proteins. Bioinformatics tools were used to detect miRNA expression levels in EVs. Different miRNA expression patterns of EVs exist in small to large follicles. Thirteen differentially expressed miRNAs (seven upregulated and six downregulated) were identified and used for analysis. A total of 1948 predicted target genes of 13 miRNAs were mapped to signaling pathways, and three significantly enriched pathways (FoxO, MAPK, and PI3K-AKT signaling pathways) were involved in follicular development, as revealed by KEGG enrichment analysis. Our findings suggest that EVs in follicular fluid play biofunctional roles during follicular development in goats.

4.
Reproduction ; 160(5): 761-772, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33065542

RESUMO

Until recently, it has been difficult to derive and maintain stable embryonic stem cells lines from livestock species. Sheep ESCs with characteristics similar to those described for rodents and primates have not been produced. We report the derivation of sheep ESCs under a chemically defined culture system containing fibroblast growth factor 2 (FGF2) and a tankyrase/Wnt inhibitor (IWR1). We also show that several culture conditions used for stabilizing naïve and intermediate pluripotency states in humans and mice were unsuitable to maintain ovine pluripotency in vitro. Sheep ESCs display a smooth dome-shaped colony morphology, and maintain an euploid karyotype and stable expression of pluripotency markers after more than 40 passages. We further demonstrate that IWR1 and FGF2 are essential for the maintenance of an undifferentiated state in de novo derived sheep ESCs. The derivation of stable pluripotent cell lines from sheep blastocysts represents a step forward toward understanding pluripotency regulation in livestock species and developing novel biomedical and agricultural applications.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Ovinos
5.
Cells ; 9(2)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075111

RESUMO

MicroRNAs play key roles during ovary development, with emerging evidence suggesting that miR-202-5p is specifically expressed in female animal gonads. Granulosa cells (GCs) are somatic cells that are closely related to the development of female gametes in mammalian ovaries. However, the biological roles of miR-202-5p in GCs remain unknown. Here, we show that miR-202-5p is specifically expressed in GCs and accumulates in extracellular vesicles (EVs) from large growth follicles in goat ovaries. In vitro assays showed that miR-202-5p induced apoptosis and suppressed the proliferation of goat GCs. We further revealed that miR-202-5p is a functional miRNA that targets the transforming growth factor-beta type II receptor (TGFßR2). MiR-202-5p attenuated TGF-ß/SMAD signaling through the degradation of TGFßR2 at both the mRNA and protein level, decreasing p-SMAD3 levels in GCs. Moreover, we verified that steroidogenic factor 1 (SF1) is a transcriptional factor that binds to the promoters of miR-202 and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) through luciferase reporter and chromatin immunoprecipitation (ChIP) assays. That contributed to positive correlation between miR-202-5p and CYP19A1 expression and estradiol (E2) release. Furthermore, SF1 repressed TGFßR2 and p-SMAD3 levels in GCs through the transactivation of miR-202-5p. Taken together, these results suggest a mechanism by which miR-202-5p regulates canonical TGF-ß/SMAD signaling through targeting TGFßR2 in GCs. This provides insight into the transcriptional regulation of miR-202 and CYP19A1 during goat ovarian follicular development.


Assuntos
Células da Granulosa/fisiologia , MicroRNAs/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Fator Esteroidogênico 1/metabolismo , Animais , Apoptose/fisiologia , Feminino , Cabras , Células da Granulosa/citologia , Células da Granulosa/metabolismo , MicroRNAs/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Fator Esteroidogênico 1/genética , Ativação Transcricional , Transfecção
6.
Int J Biol Sci ; 15(7): 1368-1382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31337968

RESUMO

Recent studies have demonstrated that dermal papilla cell-derived exosomes (DPC-Exos) promote the anagen stage of hair follicle (HF) growth and delay the catagen stage. However, the roles of DPC-Exos in regulating hair follicle stem cell (HFSC) quiescence and activation remain unknown. Here, we found that HFSC differentiation was induced by co-culture with DPCs, and that DPC-Exos attached to the surface of HFSCs. Using micro RNA (miRNA) high-throughput sequencing, we identified 111 miRNAs that were significantly differentially expressed between DPC-Exos and DPCs, and the predicted target genes of the top 34 differentially expressed miRNAs indicated that DPC-Exos regulate HFSCs proliferation and differentiation via genes involved in cellular signal transduction, fatty acid expression regulation, and cellular communication. The overexpression of miR-22-5p indicated that it negatively regulates HFSC proliferation and LEF1 was revealed as the direct target gene of miR-22-5p. We therefore propose the miR-22-5p-LEF1 axis as a novel pathway regulating HFSC proliferation.


Assuntos
Derme/citologia , Exossomos/metabolismo , Folículo Piloso/citologia , MicroRNAs/metabolismo , Células-Tronco/citologia , Animais , Comunicação Celular , Diferenciação Celular , Divisão Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Ácidos Graxos/metabolismo , Cabras , Sequenciamento de Nucleotídeos em Larga Escala , Engenharia Tecidual , Via de Sinalização Wnt
7.
PeerJ ; 7: e7230, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309000

RESUMO

BACKGROUND: Hair follicles in cashmere goats are divided into primary and secondary hair follicles (HFs). HF development, which determines the morphological structure, is regulated by a large number of vital genes; however, the key functional genes and their interaction networks are still unclear. Although the vitamin D receptor (VDR) is related to cashmere goat HF formation, its precise effects are largely unknown. In the present study, we verified the functions of key genes identified in previous studies using hair dermal papilla (DP) cells as an experimental model. Furthermore, we used CRISPR/Cas9 technology to modify the VDR in DP cells to dissect the molecular mechanism underlying HF formation in cashmere goats. RESULTS: The VDR expression levels in nine tissues of Shaanbei white cashmere goats differed significantly between embryonic day 60 (E60) and embryonic day 120 (E120). At E120, VDR expression was highest in the skin. At the newborn and E120 stages, the VDR protein was highly expressed in the root sheath and hair ball region of Shaanbei cashmere goats. We cloned the complete CDS of VDR in the Shaanbei white cashmere goat and constructed a VDR-deficient DP cell model by CRISPR/Cas9. Heterozygous and homozygous mutant DP cells were produced. The growth rate of mutant DP cells was significantly lower than that of wild-type DP cells (P < 0.05) and VDR mRNA levels in DP cells decreased significantly after VDR knockdown (P < 0.05). Further, the expression levels of VGF, Noggin, Lef1, and ß-catenin were significantly downregulated (P < 0.05). CONCLUSIONS: Our results indicated that VDR has a vital role in DP cells, and that its effects are mediated by Wnt and BMP4 signaling.

8.
Biochem Biophys Res Commun ; 512(4): 779-785, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30928098

RESUMO

3-oxoacid CoA-transferase 1 (OXCT1) is a key enzyme in ketone body metabolism that is expressed in adipose and other tissues. The present study addressed the function of OXCT1 in adipose tissue from Tan sheep. The 1563 bp ovine OXCT1 coding sequence was cloned from ovine adipose tissue. The OXCT1 protein sequence was highly homologous to OXCT1 from other species. OXCT1 was highly expressed in kidney and at lower levels in small intestine, lung, spleen, heart, stomach, liver, tail adipose, and cartilage, but not in longissimus muscle. OXCT1 was expressed at higher levels in perirenal and tail adipose tissues than in subcutaneous adipose tissue. OXCT1 expression levels increased during the in vitro differentiation of adipocytes, but decreased dramatically at day 8. OXCT1 knockdown in ovine adipocytes promoted lipid accumulation, whereas overexpression did the converse. This study demonstrates that OXCT1 may play a role in adipogenesis and provides new insight on adipose deposition in sheep.


Assuntos
Adipócitos/citologia , Tecido Adiposo/fisiologia , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Adipócitos/fisiologia , Tecido Adiposo/citologia , Animais , Diferenciação Celular , Clonagem Molecular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Marcadores Genéticos , Ovinos , Gordura Subcutânea/citologia , Gordura Subcutânea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...