Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501165

RESUMO

Cargo traffic through the Golgi apparatus is mediated by cisternal maturation, but it remains largely unclear how the cis-cisternae, the earliest Golgi sub-compartment, is generated and how the Golgi matures into the trans-Golgi network (TGN). Here, we use high-speed and high-resolution confocal microscopy to analyze the spatiotemporal dynamics of a diverse set of proteins that reside in and around the Golgi in budding yeast. We find many mobile punctate structures that harbor yeast counterparts of mammalian endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) proteins, which we term 'yeast ERGIC'. It occasionally exhibits approach and contact behavior toward the ER exit sites and gradually matures into the cis-Golgi. Upon treatment with the Golgi-disrupting agent brefeldin A, the ERGIC proteins form larger aggregates corresponding to the Golgi entry core compartment in plants, while cis- and medial-Golgi proteins are absorbed into the ER. We further analyze the dynamics of several late Golgi proteins to better understand the Golgi-TGN transition. Together with our previous studies, we demonstrate a detailed spatiotemporal profile of the entire cisternal maturation process from the ERGIC to the Golgi and further to the TGN.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Animais , Saccharomyces cerevisiae/metabolismo , Complexo de Golgi/metabolismo , Rede trans-Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Mamíferos
2.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37801070

RESUMO

Membrane rupture of lysosomes results in leakage of their contents, which is harmful to cells. Recent studies have reported that several systems contribute to the repair or elimination of damaged lysosomes. Lysophagy is a type of selective autophagy that plays a crucial role in the lysosomal damage response. Because multiple pathways are involved in this response, an assay that specifically evaluates lysophagy is needed. Here, we developed the TMEM192-mKeima probe to evaluate lysophagy. By comparing the use of this probe with the conventional galectin-3 assay, we showed that this probe is more specific to lysophagy. Using TMEM192-mKeima, we showed that TFEB and p62 are important for the lysosomal damage response but not for lysophagy, although they have previously been considered to be involved in lysophagy. We further investigated the initial steps in lysophagy and identified UBE2L3, UBE2N, TRIM10, 16, and 27 as factors involved in it. Our results demonstrate that the TMEM192-mKeima probe is a useful tool for investigating lysophagy.


Assuntos
Autofagia , Macroautofagia , Sondas Moleculares , Autofagia/fisiologia , Lisossomos/metabolismo
3.
EMBO Rep ; 23(4): e53477, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35166010

RESUMO

The vacuole/lysosome plays essential roles in the growth and proliferation of many eukaryotic cells via the activation of target of rapamycin complex 1 (TORC1). Moreover, the yeast vacuole/lysosome is necessary for progression of the cell division cycle, in part via signaling through the TORC1 pathway. Here, we show that an essential cyclin-dependent kinase, Bur1, plays a critical role in cell cycle progression in cooperation with TORC1. A mutation in BUR1 combined with a defect in vacuole inheritance shows a synthetic growth defect. Importantly, the double mutant, as well as a bur1-267 mutant on its own, has a severe defect in cell cycle progression from G1 phase. In further support that BUR1 functions with TORC1, mutation of bur1 alone results in high sensitivity to rapamycin, a TORC1 inhibitor. Mechanistic insight for Bur1 function comes from the findings that Bur1 directly phosphorylates Sch9, a target of TORC1, and that both Bur1 and TORC1 are required for the activation of Sch9. Together, these discoveries suggest that multiple signals converge on Sch9 to promote cell cycle progression.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacúolos , Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição , Vacúolos/metabolismo
4.
Mol Biol Cell ; 31(17): 1835-1845, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32583743

RESUMO

Fig4 is a phosphoinositide phosphatase that converts PI3,5P2 to PI3P. Paradoxically, mutation of Fig4 results in lower PI3,5P2, indicating that Fig4 is also required for PI3,5P2 production. Fig4 promotes elevation of PI3,5P2, in part, through stabilization of a protein complex that includes its opposing lipid kinase, Fab1, and the scaffold protein Vac14. Here we show that multiple regions of Fig4 contribute to its roles in the elevation of PI3,5P2: its catalytic site, an N-terminal disease-related surface, and a C-terminal region. We show that mutation of the Fig4 catalytic site enhances the formation of the Fab1-Vac14-Fig4 complex, and reduces the ability to elevate PI3,5P2. This suggests that independent of its lipid phosphatase function, the active site plays a role in the Fab1-Vac14-Fig4 complex. We also show that the N-terminal disease-related surface contributes to the elevation of PI3,5P2 and promotes Fig4 association with Vac14 in a manner that requires the Fig4 C-terminus. We find that the Fig4 C-terminus alone interacts with Vac14 in vivo and retains some functions of full-length Fig4. Thus, a subset of Fig4 functions are independent of its phosphatase domain and at least three regions of Fig4 play roles in the function of the Fab1-Vac14-Fig4 complex.


Assuntos
Flavoproteínas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Flavoproteínas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
5.
Mol Biol Cell ; 29(4): 510-522, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29237820

RESUMO

Target of rapamycin complex 1 (TORC1) is a central cellular signaling coordinator that allows eukaryotic cells to adapt to the environment. In the budding yeast, Saccharomyces cerevisiae, TORC1 senses nitrogen and various stressors and modulates proteosynthesis, nitrogen uptake and metabolism, stress responses, and autophagy. There is some indication that TORC1 may regulate these downstream pathways individually. However, the potential mechanisms for such differential regulation are unknown. Here we show that the serine/threonine protein kinase Sch9 branch of TORC1 signaling depends specifically on the integrity of the vacuolar membrane, and this dependency originates in changes in Sch9 localization reflected by phosphatidylinositol 3,5-bisphosphate. Moreover, oxidative stress induces the delocalization of Sch9 from vacuoles, contributing to the persistent inhibition of the Sch9 branch after stress. Thus, our results establish that regulation of the vacuolar localization of Sch9 serves as a selective switch for the Sch9 branch in divergent TORC1 signaling. We propose that the Sch9 branch integrates the intrinsic activity of TORC1 kinase and vacuolar status, which is monitored by the phospholipids of the vacuolar membrane, into the regulation of macromolecular synthesis.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vacúolos/metabolismo , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Microscopia de Fluorescência , Estresse Oxidativo/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
6.
J Cell Biol ; 216(7): 2075-2090, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28637746

RESUMO

Adaptation to environmental stress is critical for cell survival. Adaptation generally occurs via changes in transcription and translation. However, there is a time lag before changes in gene expression, which suggests that more rapid mechanisms likely exist. In this study, we show that in yeast, the cyclin-dependent kinase Pho85/CDK5 provides protection against hyperosmotic stress and acts before long-term adaptation provided by Hog1. This protection requires the vacuolar/endolysosomal signaling lipid PI3,5P2 We show that Pho85/CDK5 directly phosphorylates and positively regulates the PI3P-5 kinase Fab1/PIKfyve complex and provide evidence that this regulation is conserved in mammalian cells. Moreover, this regulation is particularly crucial in yeast for the stress-induced transient elevation of PI3,5P2 Our study reveals a rapid protection mechanism regulated by Pho85/CDK5 via signaling from the vacuole/lysosome, which is distinct temporally and spatially from the previously discovered long-term adaptation Hog1 pathway, which signals from the nucleus.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Endossomos/enzimologia , Lisossomos/enzimologia , Pressão Osmótica , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sistemas do Segundo Mensageiro , Vacúolos/enzimologia , Adaptação Fisiológica , Animais , Células Cultivadas , Quinase 5 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Ciclinas/metabolismo , Fibroblastos/enzimologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Viabilidade Microbiana , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Regulação para Cima
7.
Biochem Soc Trans ; 44(1): 177-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26862203

RESUMO

Phosphorylated phosphatidylinositol lipids are crucial for most eukaryotes and have diverse cellular functions. The low-abundance signalling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is critical for cellular homoeostasis and adaptation to stimuli. A large complex of proteins that includes the lipid kinase Fab1-PIKfyve, dynamically regulates the levels of PI(3,5)P2. Deficiencies in PI(3,5)P2 are linked to some human diseases, especially those of the nervous system. Future studies will probably determine new, undiscovered regulatory roles of PI(3,5)P2, as well as uncover mechanistic insights into how PI(3,5)P2 contributes to normal human physiology.


Assuntos
Células/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Doença , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Fatores de Tempo
8.
Mol Biol Cell ; 25(7): 1171-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24478451

RESUMO

TORC1, a conserved protein kinase, regulates cell growth in response to nutrients. Localization of mammalian TORC1 to lysosomes is essential for TORC1 activation. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P(2)), an endosomal signaling lipid, is implicated in insulin-dependent stimulation of TORC1 activity in adipocytes. This raises the question of whether PI(3,5)P(2) is an essential general regulator of TORC1. Moreover, the subcellular location where PI(3,5)P(2) regulates TORC1 was not known. Here we report that PI(3,5)P(2) is required for TORC1 activity in yeast and regulates TORC1 on the vacuole (lysosome). Furthermore, we show that the TORC1 substrate, Sch9 (a homologue of mammalian S6K), is recruited to the vacuole by direct interaction with PI(3,5)P(2), where it is phosphorylated by TORC1. Of importance, we find that PI(3,5)P(2) is required for multiple downstream pathways via TORC1-dependent phosphorylation of additional targets, including Atg13, the modification of which inhibits autophagy, and phosphorylation of Npr1, which releases its inhibitory function and allows nutrient-dependent endocytosis. These findings reveal PI(3,5)P(2) as a general regulator of TORC1 and suggest that PI(3,5)P(2) provides a platform for TORC1 signaling from lysosomes.


Assuntos
Alimentos , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Autofagia , Membranas Intracelulares/metabolismo , Modelos Biológicos , Fosforilação , Saccharomyces cerevisiae/citologia , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Vacúolos/metabolismo
9.
PLoS Genet ; 7(6): e1002104, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21655088

RESUMO

CMT4J is a severe form of Charcot-Marie-Tooth neuropathy caused by mutation of the phosphoinositide phosphatase FIG4/SAC3. Affected individuals are compound heterozygotes carrying the missense allele FIG4-I41T in combination with a null allele. Analysis using the yeast two-hybrid system demonstrated that the I41T mutation impairs interaction of FIG4 with the scaffold protein VAC14. The critical role of this interaction was confirmed by the demonstration of loss of FIG4 protein in VAC14 null mice. We developed a mouse model of CMT4J by expressing a Fig4-I41T cDNA transgene on the Fig4 null background. Expression of the mutant transcript at a level 5 × higher than endogenous Fig4 completely rescued lethality, whereas 2 × expression gave only partial rescue, providing a model of the human disease. The level of FIG4-I41T protein in transgenic tissues is only 2% of that predicted by the transcript level, as a consequence of the protein instability caused by impaired interaction of the mutant protein with VAC14. Analysis of patient fibroblasts demonstrated a comparably low level of mutant I41T protein. The abundance of FIG4-I41T protein in cultured cells is increased by treatment with the proteasome inhibitor MG-132. The data demonstrate that FIG4-I41T is a hypomorphic allele encoding a protein that is unstable in vivo. Expression of FIG4-I41T protein at 10% of normal level is sufficient for long-term survival, suggesting that patients with CMT4J could be treated by increased production or stabilization of the mutant protein. The transgenic model will be useful for testing in vivo interventions to increase the abundance of the mutant protein.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Flavoproteínas/genética , Mutação , Alelos , Animais , Autofagia/genética , Doença de Charcot-Marie-Tooth/metabolismo , Fibroblastos/metabolismo , Flavoproteínas/metabolismo , Gliose/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Modelos Animais , Fosfatases de Fosfoinositídeos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Transfecção
10.
Genetics ; 186(4): 1127-37, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20923977

RESUMO

Many novel and important mutations arise in model organisms and human patients that can be difficult or impossible to identify using standard genetic approaches, especially for complex traits. Working with a previously uncharacterized dominant Saccharomyces cerevisiae mutant with impaired vacuole inheritance, we developed a pooled linkage strategy based on next-generation DNA sequencing to specifically identify functional mutations from among a large excess of polymorphisms, incidental mutations, and sequencing errors. The VAC6-1 mutation was verified to correspond to PHO81-R701S, the highest priority candidate reported by VAMP, the new software platform developed for these studies. Sequence data further revealed the large extent of strain background polymorphisms and structural alterations present in the host strain, which occurred by several mechanisms including a novel Ty insertion. The results provide a snapshot of the ongoing genomic changes that ultimately result in strain divergence and evolution, as well as a general model for the discovery of functional mutations in many organisms.


Assuntos
Análise Mutacional de DNA/métodos , Ligação Genética , Genoma Fúngico/genética , Mutação , Saccharomyces cerevisiae/genética , Evolução Biológica , Especiação Genética , Análise de Sequência de DNA/métodos , Software
11.
EMBO J ; 27(24): 3221-34, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19037259

RESUMO

The signalling lipid PI(3,5)P(2) is generated on endosomes and regulates retrograde traffic to the trans-Golgi network. Physiological signals regulate rapid, transient changes in PI(3,5)P(2) levels. Mutations that lower PI(3,5)P(2) cause neurodegeneration in human patients and mice. The function of Vac14 in the regulation of PI(3,5)P(2) was uncharacterized previously. Here, we predict that yeast and mammalian Vac14 are composed entirely of HEAT repeats and demonstrate that Vac14 exerts an effect as a scaffold for the PI(3,5)P(2) regulatory complex by direct contact with the known regulators of PI(3,5)P(2): Fig4, Fab1, Vac7 and Atg18. We also report that the mouse mutant ingls (infantile gliosis) results from a missense mutation in Vac14 that prevents the association of Vac14 with Fab1, generating a partial complex. Analysis of ingls and two additional mutants provides insight into the organization of the PI(3,5)P(2) regulatory complex and indicates that Vac14 mediates three distinct mechanisms for the rapid interconversion of PI3P and PI(3,5)P(2). Moreover, these studies show that the association of Fab1 with the complex is essential for viability in the mouse.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos/genética , Animais , Proteínas Relacionadas à Autofagia , Viabilidade Fetal , Flavoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Modelos Biológicos , Mutação de Sentido Incorreto , Monoéster Fosfórico Hidrolases , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Sequências Repetitivas de Aminoácidos , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
12.
Nature ; 448(7149): 68-72, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17572665

RESUMO

Membrane-bound phosphoinositides are signalling molecules that have a key role in vesicle trafficking in eukaryotic cells. Proteins that bind specific phosphoinositides mediate interactions between membrane-bounded compartments whose identity is partially encoded by cytoplasmic phospholipid tags. Little is known about the localization and regulation of mammalian phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a phospholipid present in small quantities that regulates membrane trafficking in the endosome-lysosome axis in yeast. Here we describe a multi-organ disorder with neuronal degeneration in the central nervous system, peripheral neuronopathy and diluted pigmentation in the 'pale tremor' mouse. Positional cloning identified insertion of ETn2beta (early transposon 2beta) into intron 18 of Fig4 (A530089I17Rik), the homologue of a yeast SAC (suppressor of actin) domain PtdIns(3,5)P2 5-phosphatase located in the vacuolar membrane. The abnormal concentration of PtdIns(3,5)P2 in cultured fibroblasts from pale tremor mice demonstrates the conserved biochemical function of mammalian Fig4. The cytoplasm of fibroblasts from pale tremor mice is filled with large vacuoles that are immunoreactive for LAMP-2 (lysosomal-associated membrane protein 2), consistent with dysfunction of the late endosome-lysosome axis. Neonatal neurodegeneration in sensory and autonomic ganglia is followed by loss of neurons from layers four and five of the cortex, deep cerebellar nuclei and other localized brain regions. The sciatic nerve exhibits reduced numbers of large-diameter myelinated axons, slowed nerve conduction velocity and reduced amplitude of compound muscle action potentials. We identified pathogenic mutations of human FIG4 (KIAA0274) on chromosome 6q21 in four unrelated patients with hereditary motor and sensory neuropathy. This novel form of autosomal recessive Charcot-Marie-Tooth disorder is designated CMT4J.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Flavoproteínas/genética , Mutação , Degeneração Neural/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Mapeamento Cromossômico , Cromossomos Humanos Par 6 , Estudos de Coortes , Feminino , Flavoproteínas/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Degeneração Neural/patologia , Nervos Periféricos/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatases de Fosfoinositídeos , Monoéster Fosfórico Hidrolases , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Retroelementos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tremor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...