Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874206

RESUMO

BACKGROUND: Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) stand as pivotal diagnostic tools for brain disorders, offering the potential for mutually enriching disease diagnostic perspectives. However, the costs associated with PET scans and the inherent radioactivity have limited the widespread application of PET. Furthermore, it is noteworthy to highlight the promising potential of high-field and ultra-high-field neuroimaging in cognitive neuroscience research and clinical practice. With the enhancement of MRI resolution, a related question arises: can high-resolution MRI improve the quality of PET images? PURPOSE: This study aims to enhance the quality of synthesized PET images by leveraging the superior resolution capabilities provided by high-field and ultra-high-field MRI. METHODS: From a statistical perspective, the joint probability distribution is considered the most direct and fundamental approach for representing the correlation between PET and MRI. In this study, we proposed a novel model, the joint diffusion attention model, namely, the joint diffusion attention model (JDAM), which primarily focuses on learning information about the joint probability distribution. JDAM consists of two primary processes: the diffusion process and the sampling process. During the diffusion process, PET gradually transforms into a Gaussian noise distribution by adding Gaussian noise, while MRI remains fixed. The central objective of the diffusion process is to learn the gradient of the logarithm of the joint probability distribution between MRI and noise PET. The sampling process operates as a predictor-corrector. The predictor initiates a reverse diffusion process, and the corrector applies Langevin dynamics. RESULTS: Experimental results from the publicly available Alzheimer's Disease Neuroimaging Initiative dataset highlight the effectiveness of the proposed model compared to state-of-the-art (SOTA) models such as Pix2pix and CycleGAN. Significantly, synthetic PET images guided by ultra-high-field MRI exhibit marked improvements in signal-to-noise characteristics when contrasted with those generated from high-field MRI data. These results have been endorsed by medical experts, who consider the PET images synthesized through JDAM to possess scientific merit. This endorsement is based on their symmetrical features and precise representation of regions displaying hypometabolism, a hallmark of Alzheimer's disease. CONCLUSIONS: This study establishes the feasibility of generating PET images from MRI. Synthesis of PET by JDAM significantly enhances image quality compared to SOTA models.

2.
Phys Med Biol ; 68(2)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36595239

RESUMO

Cardiac diffusion tensor imaging (DTI) is a noninvasive method for measuring the microstructure of the myocardium. However, its long scan time significantly hinders its wide application. In this study, we developed a deep learning framework to obtain high-quality DTI parameter maps from six diffusion-weighted images (DWIs) by combining deep-learning-based image generation and tensor fitting, and named the new framework FG-Net. In contrast to frameworks explored in previous deep-learning-based fast DTI studies, FG-Net generates inter-directional DWIs from six input DWIs to supplement the loss information and improve estimation accuracy for DTI parameters. FG-Net was evaluated using two datasets ofex vivohuman hearts. The results showed that FG-Net can generate fractional anisotropy, mean diffusivity maps, and helix angle maps from only six raw DWIs, with a quantification error of less than 5%. FG-Net outperformed conventional tensor fitting and black-box network fitting in both qualitative and quantitative metrics. We also demonstrated that the proposed FG-Net can achieve highly accurate fractional anisotropy and helix angle maps in DWIs with differentb-values.


Assuntos
Imagem de Tensor de Difusão , Processamento de Imagem Assistida por Computador , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Redes Neurais de Computação , Coração/diagnóstico por imagem , Anisotropia
3.
IEEE Trans Image Process ; 31: 3868-3883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617180

RESUMO

The image nonlocal self-similarity (NSS) prior refers to the fact that a local patch often has many nonlocal similar patches to it across the image and has been widely applied in many recently proposed machining learning algorithms for image processing. However, there is no theoretical analysis on its working principle in the literature. In this paper, we discover a potential causality between NSS and low-rank property of color images, which is also available to grey images. A new patch group based NSS prior scheme is proposed to learn explicit NSS models of natural color images. The numerical low-rank property of patched matrices is also rigorously proved. The NSS-based QMC algorithm computes an optimal low-rank approximation to the high-rank color image, resulting in high PSNR and SSIM measures and particularly the better visual quality. A new tensor NSS-based QMC method is also presented to solve the color video inpainting problem based on quaternion tensor representation. The numerical experiments on color images and videos indicate the advantages of NSS-based QMC over the state-of-the-art methods.

4.
PLoS One ; 12(7): e0179051, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28692667

RESUMO

In this paper we consider the problem of restoration of a image contaminated by a mixture of Gaussian and impulse noises. We propose a new statistic called ROADGI which improves the well-known Rank-Ordered Absolute Differences (ROAD) statistic for detecting points contaminated with the impulse noise in this context. Combining ROADGI statistic with the method of weights optimization we obtain a new algorithm called Optimal Weights Mixed Filter (OWMF) to deal with the mixed noise. Our simulation results show that the proposed filter is effective for mixed noises, as well as for single impulse noise and for single Gaussian noise.


Assuntos
Algoritmos , Artefatos , Distribuição Normal , Simulação por Computador , Processamento de Imagem Assistida por Computador
5.
Bioinformatics ; 32(16): 2435-43, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153618

RESUMO

MOTIVATION: Inter-residue contacts in proteins dictate the topology of protein structures. They are crucial for protein folding and structural stability. Accurate prediction of residue contacts especially for long-range contacts is important to the quality of ab inito structure modeling since they can enforce strong restraints to structure assembly. RESULTS: In this paper, we present a new Residue-Residue Contact predictor called R2C that combines machine learning-based and correlated mutation analysis-based methods, together with a two-dimensional Gaussian noise filter to enhance the long-range residue contact prediction. Our results show that the outputs from the machine learning-based method are concentrated with better performance on short-range contacts; while for correlated mutation analysis-based approach, the predictions are widespread with higher accuracy on long-range contacts. An effective query-driven dynamic fusion strategy proposed here takes full advantages of the two different methods, resulting in an impressive overall accuracy improvement. We also show that the contact map directly from the prediction model contains the interesting Gaussian noise, which has not been discovered before. Different from recent studies that tried to further enhance the quality of contact map by removing its transitive noise, we designed a new two-dimensional Gaussian noise filter, which was especially helpful for reinforcing the long-range residue contact prediction. Tested on recent CASP10/11 datasets, the overall top L/5 accuracy of our final R2C predictor is 17.6%/15.5% higher than the pure machine learning-based method and 7.8%/8.3% higher than the correlated mutation analysis-based approach for the long-range residue contact prediction. AVAILABILITY AND IMPLEMENTATION: http://www.csbio.sjtu.edu.cn/bioinf/R2C/Contact:hbshen@sjtu.edu.cn SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Ruído , Distribuição Normal , Algoritmos , Aprendizado de Máquina , Mutação , Dobramento de Proteína , Proteínas
6.
Structure ; 22(3): 496-506, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24508340

RESUMO

This article presents a method to study large-scale conformational changes by combining electron microscopy (EM) single-particle image analysis and normal mode analysis (NMA). It is referred to as HEMNMA, which stands for hybrid electron microscopy normal mode analysis. NMA of a reference structure (atomic-resolution structure or EM volume) is used to predict possible motions that are then confronted with EM images within an automatic iterative elastic 3D-to-2D alignment procedure to identify actual motions in the imaged samples. HEMNMA can be used to extensively analyze the conformational changes and may be used in combination with classic discrete procedures. The identified conformations allow modeling of deformation pathways compatible with the experimental data. HEMNMA was tested with synthetic and experimental data sets of E. coli 70S ribosome, DNA polymerase Pol α and B subunit complex of the eukaryotic primosome, and tomato bushy stunt virus.


Assuntos
Biologia Computacional/métodos , Substâncias Macromoleculares/química , Modelos Moleculares , Microscopia Crioeletrônica/métodos , DNA Polimerase I/química , DNA Polimerase beta/química , Escherichia coli , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Conformação Proteica , Ribossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...