Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(1): 61-74, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677043

RESUMO

PURPOSE: To improve the spatiotemporal qualities of images and dynamics of speech MRI through an improved data sampling and image reconstruction approach. METHODS: For data acquisition, we used a Poisson-disc random under sampling scheme that reduced the undersampling coherence. For image reconstruction, we proposed a novel locally higher-rank partial separability model. This reconstruction model represented the oral and static regions using separate low-rank subspaces, therefore, preserving their distinct temporal signal characteristics. Regional optimized temporal basis was determined from the regional-optimized virtual coil approach. Overall, we achieved a better spatiotemporal image reconstruction quality with the potential of reducing total acquisition time by 50%. RESULTS: The proposed method was demonstrated through several 2-mm isotropic, 64 mm total thickness, dynamic acquisitions with 40 frames per second and compared to the previous approach using a global subspace model along with other k-space sampling patterns. Individual timeframe images and temporal profiles of speech samples were shown to illustrate the ability of the Poisson-disc under sampling pattern in reducing total acquisition time. Temporal information of sagittal and coronal directions was also shown to illustrate the effectiveness of the locally higher-rank operator and regional optimized temporal basis. To compare the reconstruction qualities of different regions, voxel-wise temporal SNR analysis were performed. CONCLUSION: Poisson-disc sampling combined with a locally higher-rank model and a regional-optimized temporal basis can drastically improve the spatiotemporal image quality and provide a 50% reduction in overall acquisition time.


Assuntos
Imageamento por Ressonância Magnética , Fala , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37621417

RESUMO

New developments in dynamic magnetic resonance imaging (MRI) facilitate high-quality data acquisition of human velopharyngeal deformations in real-time speech. With recently established speech motion atlases, group analysis is made possible via spatially and temporally aligned datasets in the atlas space from a desired population of interest. In practice, when analyzing motion characteristics from various subjects performing a designated speech task, it is observed that different subjects' velopharyngeal deformation patterns could vary during the pronunciation of the same utterance, regardless of the spatial and temporal alignment of their MRI. Since such variation can be subtle, identification and extraction of unique patterns out of these high-dimensional datasets is a challenging task. In this work, we present a method that computes and visualizes subtle deformation variation patterns as principal components of a subject group's dynamic motion fields in the atlas space. Coupled with the real-time speech audio recordings during image acquisition, the key time frames that contain maximum speech variations are identified by the principal components of temporally aligned audio waveforms, which in turn inform the temporal location of the maximum spatial deformation variation. Henceforth, the motion fields between the key frames and the reference frame for each subject are computed and warped into the common atlas space, enabling a direct extraction of motion variation patterns via quantitative analysis. The method was evaluated on a dataset of twelve healthy subjects. Subtle velopharyngeal motion differences were visualized quantitatively to reveal pronunciation-specific patterns among different subjects.

3.
Cleft Palate Craniofac J ; : 10556656231183385, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335134

RESUMO

OBJECTIVE: To introduce a highly innovative imaging method to study the complex velopharyngeal (VP) system and introduce the potential future clinical applications of a VP atlas in cleft care. DESIGN: Four healthy adults participated in a 20-min dynamic magnetic resonance imaging scan that included a high-resolution T2-weighted turbo-spin-echo 3D structural scan and five custom dynamic speech imaging scans. Subjects repeated a variety of phrases when in the scanner as real-time audio was captured. SETTING: Multisite institution and clinical setting. PARTICIPANTS: Four adult subjects with normal anatomy were recruited for this study. MAIN OUTCOME: Establishment of 4-D atlas constructed from dynamic VP MRI data. RESULTS: Three-dimensional dynamic magnetic resonance imaging was successfully used to obtain high quality dynamic speech scans in an adult population. Scans were able to be re-sliced in various imaging planes. Subject-specific MR data were then reconstructed and time-aligned to create a velopharyngeal atlas representing the averaged physiological movements across the four subjects. CONCLUSIONS: The current preliminary study examined the feasibility of developing a VP atlas for potential clinical applications in cleft care. Our results indicate excellent potential for the development and use of a VP atlas for assessing VP physiology during speech.

4.
Magn Reson Med ; 89(2): 652-664, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36289572

RESUMO

PURPOSE: To enable a more comprehensive view of articulations during speech through near-isotropic 3D dynamic MRI with high spatiotemporal resolution and large vocal-tract coverage. METHODS: Using partial separability model-based low-rank reconstruction coupled with a sparse acquisition of both spatial and temporal models, we are able to achieve near-isotropic resolution 3D imaging with a high frame rate. The total acquisition time of the speech acquisition is shortened by introducing a sparse temporal sampling that interleaves one temporal navigator with four randomized phase and slice-encoded imaging samples. Memory and computation time are improved through compressing coils based on the region of interest for low-rank constrained reconstruction with an edge-preserving spatial penalty. RESULTS: The proposed method has been evaluated through experiments on several speech samples, including a standard reading passage. A near-isotropic 1.875 × 1.875 × 2 mm3 spatial resolution, 64-mm through-plane coverage, and a 35.6-fps temporal resolution are achieved. Investigations and analysis on specific speech samples support novel insights into nonsymmetric tongue movement, velum raising, and coarticulation events with adequate visualization of rapid articulatory movements. CONCLUSION: Three-dimensional dynamic images of the vocal tract structures during speech with high spatiotemporal resolution and axial coverage is capable of enhancing linguistic research, enabling visualization of soft tissue motions that are not possible with other modalities.


Assuntos
Imageamento por Ressonância Magnética , Fala , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Idioma , Linguística
5.
J Acoust Soc Am ; 150(5): 3500, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34852570

RESUMO

Magnetic resonance (MR) imaging is becoming an established tool in capturing articulatory and physiological motion of the structures and muscles throughout the vocal tract and enabling visual and quantitative assessment of real-time speech activities. Although motion capture speed has been regularly improved by the continual developments in high-speed MR technology, quantitative analysis of multi-subject group data remains challenging due to variations in speaking rate and imaging time among different subjects. In this paper, a workflow of post-processing methods that matches different MR image datasets within a study group is proposed. Each subject's recorded audio waveform during speech is used to extract temporal domain information and generate temporal alignment mappings from their matching pattern. The corresponding image data are resampled by deformable registration and interpolation of the deformation fields, achieving inter-subject temporal alignment between image sequences. A four-dimensional dynamic MR speech atlas is constructed using aligned volumes from four human subjects. Similarity tests between subject and target domains using the squared error, cross correlation, and mutual information measures all show an overall score increase after spatiotemporal alignment. The amount of image variability in atlas construction is reduced, indicating a quality increase in the multi-subject data for groupwise quantitative analysis.


Assuntos
Algoritmos , Fala , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...