Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38544210

RESUMO

Graphics processing units (GPUs) facilitate massive parallelism and high-capacity storage, and thus are suitable for the iterative reconstruction of ultrahigh-resolution micro computed tomography (CT) scans by on-the-fly system matrix (OTFSM) calculation using ordered subsets expectation maximization (OSEM). We propose a finite state automaton (FSA) method that facilitates iterative reconstruction using a heterogeneous multi-GPU platform through parallelizing the matrix calculations derived from a ray tracing system of ordered subsets. The FSAs perform flow control for parallel threading of the heterogeneous GPUs, which minimizes the latency of launching ordered-subsets tasks, reduces the data transfer between the main system memory and local GPU memory, and solves the memory-bound of a single GPU. In the experiments, we compared the operation efficiency of OS-MLTR for three reconstruction environments. The heterogeneous multiple GPUs with job queues for high throughput calculation speed is up to five times faster than the single GPU environment, and that speed up is nine times faster than the heterogeneous multiple GPUs with the FIFO queues of the device scheduling control. Eventually, we proposed an event-triggered FSA method for iterative reconstruction using multiple heterogeneous GPUs that solves the memory-bound issue of a single GPU at ultrahigh resolutions, and the routines of the proposed method were successfully executed on each GPU simultaneously.

2.
J Comput Assist Tomogr ; 45(1): 73-77, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31929375

RESUMO

ABSTRACT: The purpose of this study was to evaluate the relationship between radiation dose and noise level on various coronary calcium scoring protocols between 64-multidetector computed tomography (MDCT) and 320-MDCT. The cardiac QRM phantoms (1 small size and 1 medium size) were used in this study. Lower-dose imaging protocols were proposed for optimization with the parameters of 120 kVp and 10 mAs for small-size phantom (0.336 mSv) in 64-MDCT imaging and small-size phantom (0.2 mSv) in 320-MDCT case, and 120 kVp and 80 mAs for medium-size phantom (2.73 mSv) in 64-MDCT imaging and medium-size phantom (1.58 mSv) in 320-MDCT case. Our results suggest that people can apply lower-dose protocols in the clinical use for early diagnosis of coronary disease without sacrificing diagnostic accuracy.


Assuntos
Doença das Coronárias/diagnóstico por imagem , Tomografia Computadorizada Multidetectores/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Diagnóstico Precoce , Humanos , Imagens de Fantasmas , Doses de Radiação
3.
PLoS One ; 14(1): e0209674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30615635

RESUMO

To further reduce the noise and artifacts in the reconstructed image of sparse-view CT, we have modified the traditional total variation (TV) methods, which only calculate the gradient variations in x and y directions, and have proposed 8- and 26-directional (the multi-directional) gradient operators for TV calculation to improve the quality of reconstructed images. Different from traditional TV methods, the proposed 8- and 26-directional gradient operators additionally consider the diagonal directions in TV calculation. The proposed method preserves more information from original tomographic data in the step of gradient transform to obtain better reconstruction image qualities. Our algorithms were tested using two-dimensional Shepp-Logan phantom and three-dimensional clinical CT images. Results were evaluated using the root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), and universal quality index (UQI). All the experiment results show that the sparse-view CT images reconstructed using the proposed 8- and 26-directional gradient operators are superior to those reconstructed by traditional TV methods. Qualitative and quantitative analyses indicate that the more number of directions that the gradient operator has, the better images can be reconstructed. The 8- and 26-directional gradient operators we proposed have better capability to reduce noise and artifacts than traditional TV methods, and they are applicable to be applied to and combined with existing CT reconstruction algorithms derived from CS theory to produce better image quality in sparse-view reconstruction.


Assuntos
Abdome/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X
4.
Sensors (Basel) ; 18(12)2018 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30558381

RESUMO

Limited-angle iterative reconstruction (LAIR) reduces the radiation dose required for computed tomography (CT) imaging by decreasing the range of the projection angle. We developed an image-quality-based stopping-criteria method with a flexible and innovative instrument design that, when combined with LAIR, provides the image quality of a conventional CT system. This study describes the construction of different scan acquisition protocols for micro-CT system applications. Fully-sampled Feldkamp (FDK)-reconstructed images were used as references for comparison to assess the image quality produced by these tested protocols. The insufficient portions of a sinogram were inpainted by applying a context encoder (CE), a type of generative adversarial network, to the LAIR process. The context image was passed through an encoder to identify features that were connected to the decoder using a channel-wise fully-connected layer. Our results evidence the excellent performance of this novel approach. Even when we reduce the radiation dose by 1/4, the iterative-based LAIR improved the full-width half-maximum, contrast-to-noise and signal-to-noise ratios by 20% to 40% compared to a fully-sampled FDK-based reconstruction. Our data support that this CE-based sinogram completion method enhances the efficacy and efficiency of LAIR and that would allow feasibility of limited angle reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...