Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 254: 112517, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460482

RESUMO

Developing new antimicrobials to combat drug-resistant bacterial infections is necessary due to the increasing problem of bacterial resistance. In this study, four metallic ruthenium complexes modified with benzothiazoles were designed, synthesized and subjected to bio-evaluated. Among them, Ru-2 displayed remarkable inhibitory activity against Staphylococcus aureus (S. aureus) with a minimum inhibitory concentration (MIC) of 1.56 µg/mL. Additionally, it showcased low hemolytic toxicity (HC50 > 200 µg/mL) and the ability to effectively eradicate S. aureus without fostering drug resistance. Further investigation into the antibacterial mechanism suggested that Ru-2 may target the phospholipid component of S. aureus, leading to the disruption of the bacterial cell membrane and subsequent leakage of cell contents (nucleic acid, protein, and ONPG), ultimately resulting in the death of the bacterial cell. In vivo studies, both the G. mellonella larvae and the mouse skin infection models were conducted, indicated that Ru-2 could potentially serve as a viable candidate for the treatment of S. aureus infection. It exhibited no toxic or side effects on normal tissues. The results suggest that benzothiazole-modified ruthenium complexes may have potential as membrane-active antimicrobials against drug-resistant bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Complexos de Coordenação , Staphylococcus aureus Resistente à Meticilina , Rutênio , Animais , Camundongos , Staphylococcus aureus , Rutênio/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Benzotiazóis/farmacologia , Complexos de Coordenação/farmacologia , Testes de Sensibilidade Microbiana
2.
Chemistry ; 29(18): e202203606, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36598368

RESUMO

The remarkable material stability and structural diversity of two-dimensional (2D) organic-inorganic hybrid perovskites (OIHPs) constitute a vast available library of versatile materials. In particular, ferroelastic property, for which the spontaneous strain can be transformed by applying mechanical stress, is very promising for extensive nanotechnological applications. However, integrating ferroelastic property into 2D OIHPs is still in its infancy. Herein, we designed two new 2D OIHPs (C3 H5 CH2 NH3 )2 [MCl4 ] (M=Mn for 1 and Cd for 2), which undergo reversible ferroelastic phase transitions with an Aizu expression 4/mmmFmmm. The templating influence of the more distorted inorganic framework on the disordering of organic cations and the stronger hydrogen bonds has a key role in the striking improvement of Curie temperature from 246 K in 1 to 273 K in 2. Meanwhile, the minimized alteration of structural motif ensures the well maintaining of the ferroelastic performance in the forms of crystals and thin films, as demonstrated by the identifiable evolution of domain structures. This work will provide a fertile new ground for enlarging the limited number of 2D ferroelastic OIHPs with better practical utility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...