Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosurg Spine ; : 1-11, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905708

RESUMO

OBJECTIVE: Cervical spondylotic myelopathy (CSM) stands as the most prevalent form of spinal cord injury, frequently prompting various changes in both the brain and spinal cord. However, the precise nature of these changes within the brains and spinal cords of CSM patients experiencing hand clumsiness (HCL) symptoms has remained elusive. The authors aimed to scrutinize these alterations and explore potential links between these changes and the onset of HCL symptoms. METHODS: Using the modified Japanese Orthopaedic Association (mJOA) scale, the authors classified CSM patients into two groups: those without HCL and those with HCL. The authors performed voxel-wise z-score transformation amplitude of low-frequency fluctuations (zALFF) and resting-state functional connectivity (FC) evaluations in the brain. Additionally, they used the Spinal Cord Toolbox to calculate the fractional anisotropy (FA) of spinal cord tracts. The analysis also encompassed an examination of the correlation of these measures with improvements in mJOA scores. RESULTS: Significant disparities in zALFF values surfaced in the right calcarine, right cuneus, right precuneus, right middle occipital gyrus (MOG), right superior occipital gyrus (SOG), and right superior parietal gyrus (SPG) between healthy controls (HC), patients without HCL, and patients with HCL, primarily within the visual cortex. In the patient group, patients with HCL displayed reduced FC between the right calcarine, right MOG, right SOG, right SPG, right SFG, bilateral MFG, and left median cingulate and paracingulate gyri when compared with patients without HCL. Moreover, significant differences in FA values of the corticospinal tract (CST) and reticulospinal tract (REST) at the C2 level emerged among HC, patients without HCL, and patients with HCL. Notably, zALFF, FC, and FA values in specific brain regions and spinal cord tracts exhibited correlations with mJOA upper-extremity scores. Additionally, FA values of the CST and REST correlated with zALFF values in the right calcarine, right MOG, right SOG, and right SPG. CONCLUSIONS: Alterations within brain regions associated with the visual cortex, the fronto-parietal-occipital attention network, and spinal cord pathways appear to play a substantial role in the emergence and progression of HCL symptoms. Furthermore, the existence of a potential connection between the spinal cord and the brain suggests that this link might be related to the clinical symptoms of CSM.

2.
Neuroimage ; 290: 120558, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437909

RESUMO

The prolonged duration of chronic low back pain (cLBP) inevitably leads to changes in the cognitive, attentional, sensory and emotional processing brain regions. Currently, it remains unclear how these alterations are manifested in the interplay between brain functional and structural networks. This study aimed to predict the Oswestry Disability Index (ODI) in cLBP patients using multimodal brain magnetic resonance imaging (MRI) data and identified the most significant features within the multimodal networks to aid in distinguishing patients from healthy controls (HCs). We constructed dynamic functional connectivity (dFC) and structural connectivity (SC) networks for all participants (n = 112) and employed the Connectome-based Predictive Modeling (CPM) approach to predict ODI scores, utilizing various feature selection thresholds to identify the most significant network change features in dFC and SC outcomes. Subsequently, we utilized these significant features for optimal classifier selection and the integration of multimodal features. The results revealed enhanced connectivity among the frontoparietal network (FPN), somatomotor network (SMN) and thalamus in cLBP patients compared to HCs. The thalamus transmits pain-related sensations and emotions to the cortical areas through the dorsolateral prefrontal cortex (dlPFC) and primary somatosensory cortex (SI), leading to alterations in whole-brain network functionality and structure. Regarding the model selection for the classifier, we found that Support Vector Machine (SVM) best fit these significant network features. The combined model based on dFC and SC features significantly improved classification performance between cLBP patients and HCs (AUC=0.9772). Finally, the results from an external validation set support our hypotheses and provide insights into the potential applicability of the model in real-world scenarios. Our discovery of enhanced connectivity between the thalamus and both the dlPFC (FPN) and SI (SMN) provides a valuable supplement to prior research on cLBP.


Assuntos
Conectoma , Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Encéfalo , Tálamo , Imageamento por Ressonância Magnética/métodos
3.
Front Neurosci ; 17: 1087945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816111

RESUMO

Introduction: Cervical spondylotic myelopathy (CSM) is a common form of non-traumatic spinal cord injury (SCI) and usually leads to remodeling of the brain and spinal cord. In CSM with gait instability, the remodeling of the brain and cervical spinal cord is unclear. We attempted to explore the remodeling of these patients' brains and spinal cords, as well as the relationship between the remodeling of the brain and spinal cord and gait instability. Methods: According to the CSM patients' gait, we divided patients into two groups: normal gait patients (nPT) and abnormal gait patients (aPT). Voxel-wise z-score transformation amplitude of low-frequency fluctuations (zALFF) and resting-state functional connectivity (rs-FC) were performed for estimating brain changes. Cross-sectional area (CSA) and fractional anisotropy (FA) of the spinal cord were computed by Spinal cord toolbox. Correlations of these measures and the modified Japanese Orthopedic Association (mJOA) score were analyzed. Results: We found that the zALFF of caudate nucleus in aPT was higher than that in healthy controls (HC) and lower than that in nPT. The zALFF of the right postcentral gyrus and paracentral lobule in HC was higher than those of aPT and nPT. Compared with the nPT, the aPT showed increased functional connectivity between the caudate nucleus and left angular gyrus, bilateral precuneus and bilateral posterior cingulate cortex (PCC), which constitute a vital section of the default mode network (DMN). No significantly different FA values or CSA of spinal tracts at the C2 level were observed between the HC, nPT and aPT groups. In CSM, the right paracentral lobule's zALFF was negatively correlated with the FA value of fasciculus gracilis (FCG), and the right caudate zALFF was positively correlated with the FA value of the fasciculus cuneatus (FCC). The results showed that the functional connectivity between the right caudate nucleus and DMN was negatively correlated with the CSA of the lateral corticospinal tract (CST). Discussion: The activation of the caudate nucleus and the strengthening functional connectivity between the caudate nucleus and DMN were associated with gait instability in CSM patients. Correlations between spinal cord and brain function might be related to the clinical symptoms in CSM.

4.
Brain Sci ; 12(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421907

RESUMO

The Zero-P spacer was primarily developed aiming to reduce the morbidity associated with the traditional anterior cervical plate. During the past decade, many authors have reported the use of Zero-P spacers for anterior cervical discectomy and fusion (ACDF) of one or two segments. Nevertheless, there is still a paucity of knowledge on the safety and feasibility of using Zero-P spacers for 3-level fixation. The objective of this study was to investigate the clinical and radiological outcomes, with a focus on the sagittal alignment reconstruction of 3-level ACDF surgery using Zero-P spacers versus those using a traditional plate and cage system. From Sep 2013 to Aug 2016, a total of 44 patients who received 3-level ACDF surgery due to cervical spondylotic myelopathy were recruited. The Zero-P spacer was used in 23 patients (group ZP) and the traditional plate and cage system in 21 (group PC). Clinical outcomes were analyzed by Neck Disability Index (NDI) and Japanese Orthopedic Association (JOA) scores, and dysphagia was evaluated using the Bazaz score. Radiological outcomes, including fusion rate, adjacent segment degeneration (ASD), and especially changes in cervical sagittal alignment, were analyzed. The NDI and JOA scores did not differ significantly between the two groups postoperatively (p > 0.05); however, there was significantly less dysphagia in patients using Zero-P spacers at the 3- and 6-month follow-up (p < 0.05). At the 24-month follow-up, the fusion rate and ASD were similar between the two groups (p > 0.05). Interestingly, patients using Zero-P spacers had a significantly lower postoperative C2-7 Cobb angle and fused segment Cobb angle, compared to those using a traditional plate and cage system (p < 0.05); meanwhile, the fused segment disc wedge was also found to be significantly smaller in patients using Zero-P spacers after surgery (p < 0.05). Moreover, we further divided patients into subgroups according to their cervical lordosis. In patients with a preoperative C2-7 Cobb angle ≤ 10°, significantly less cervical and local lordosis, as well as disc wedge, were seen in group ZP after surgery (p < 0.05), while in others with a preoperative C2-7 Cobb angle > 10°, no significant difference in postoperative changes of the cervical sagittal alignment was seen between group ZP and group PC (p > 0.05). Zero-P spacers used in 3-level ACDF surgery could provide equivalent clinical outcomes and a lower rate of postoperative dysphagia, compared to the traditional plate and cage system. However, our results showed that it was inferior to the cervical plate in terms of sagittal alignment reconstruction for 3-level fixation. We recommend applying Zero-P spacers for 3-level ACDF in patients with good preoperative cervical lordosis (C2-7 Cobb angle > 10°), in order to restore and maintain physiological curvature of the cervical spine postoperatively.

5.
Front Aging Neurosci ; 14: 784263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444527

RESUMO

Degenerative cervical myelopathy is a progressive neurodegenerative disease, that has become increasingly prevalent in the aging population worldwide. The current study determined the factors affecting degeneration in the sensorimotor tract with degenerative cervical myelopathy and its relationship with brain structure. We divided patients into hyperintensity (HS) and non-hyperintensity (nHS) groups and measured the fractional anisotropy and apparent diffusion coefficients of the lateral corticospinal tract (CST), fasciculus gracilis and fasciculus cuneatus (FGC). Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) techniques were used to estimate brain structure changes. Correlation of the modified Japanese Orthopaedic Association (mJOA) score, light touch, pinprick, motor score, and fractional anisotropy (FA) ratios of the CST at different levels were analyzed. Compared to healthy controls, the FA ratios of CST in the HS and nHS groups were decreased at all levels, and the apparent diffusion coefficient (ADC) ratio was increased only at C4/5 levels in the HS group. The FA ratio of FGC was decreased at the C3/4 and C4/5 levels in the HS group and only decreased at the C4/5 level in the nHS group. The ADC ratio was decreased only at the C4/5 level in the HS group. VBM analysis revealed that the volume of the precentral gyrus, postcentral gyrus, and paracentral lobule increased in patients compared to controls. TBSS analysis found no statistical significance between the sensory and motor tracts in white matter. The volume of clusters in HS and nHS groups negatively correlated with the C1/2 FA ratio of the CST. The results showed that the degeneration distance of the CST was longer than the FGC, and the degeneration distance was related to the degree of compression and spinal cord damage. Structural compensation and the neurotrophin family may lead to enlargement of the brain.

6.
Dalton Trans ; 47(47): 16862-16875, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30289145

RESUMO

Nowadays, agglomeration and leaching of metal active sites during reaction and recycle processes are considered to be a thorny problem for noble metal-based catalysts. Therefore, to make improvements, nano-gold was selected as a representative research object for many noble metals. In this study, Au nanoparticles (NPs) and magnetic γ-Fe2O3 were intercalated in situ in the walls of MCM-41 via a one-pot hydrothermal method, in which the intercalation process was preceded by co-condensation of tetraethyl orthosilicate (TEOS) with MPTS-Au complexes ((3-mercaptopropyl)-trimethoxysilane (MPTS), HAuCl4·3H2O), and a Fe3O4 sol. By the confinement of silica, Au NPs and γ-Fe2O3 were well dispersed in the walls of MCM-41, the sintering and loss of Au NPs was highly restricted, and the magnetic property of γ-Fe2O3 facilitated the recycling of Au-based catalysts. Additionally, abundant void defects appeared in MCM-41 by assembly of micelles in different sizes and shapes, greatly improving the surface area of target catalysts (>1800 m2 g-1), which provided more opportunities for contact and collision between reactors and gold active sites, effectively solving the problem of mass transportation. As expected, a series FeAu@MCM-41 catalysts showed superior catalytic activity in the reduction of 4-nitrophenol (4-NP) and organic dyes (MB, RhB, and MO), and these catalysts were recycled five times without significant loss of metal species or catalytic activity. This is attributed to the confinement effect of the silica walls and the excellent magnetic properties of γ-Fe2O3. This special structure of FeAu@MCM-41 catalysts provides more insights for designing and fabricating noble metal-based catalysts with desirable performances.

7.
Artigo em Inglês | MEDLINE | ID: mdl-28634987

RESUMO

Silkworm (Bombyx mori) is an economically beneficial insect. Its growth and development are regulated by endogenous hormones. In the present study, we found that feeding titanium dioxide nanoparticles (TiO2 NP) caused a significant increase of body size. TiO2 NP stimulated the transcription of several genes, including the insulin-related hormone bombyxin, PI3K/Akt/TOR (where PI3K is phosphatidylinositol 3-kinase and TOR is target of rapamycin), and the adenosine 5'-monophosphateactivated protein kinase (AMPK)/target of rapamycin (TOR) pathways. Differentially expressed gene (DEG) analysis documented 26 developmental hormone signaling related genes that were differentially expressed following dietary TiO2 NP treatment. qPCR analysis confirmed the upregulation of insulin/ecdysteroid signaling genes, such as bombyxin B-1, bombyxin B-4, bombyxin B-7, MAPK, P70S6K, PI3k, eIF4E, E75, ecdysteroid receptor (EcR), and insulin-related peptide binding protein precursor 2 (IBP2). We infer from the upregulated expression of bombyxins and the signaling network that they act in bombyxin-stimulated ecdysteroidogenesis.


Assuntos
Bombyx/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Titânio/farmacologia , Animais , Bombyx/efeitos dos fármacos , Bombyx/genética , Perfilação da Expressão Gênica , Genes de Insetos , Hormônios de Inseto/metabolismo , Nanopartículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...