Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 10(12): 3352-3358, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31181938

RESUMO

We report a real-space imaging of formaldehyde (HCHO) adsorption on a TiO2(110) surface probed by high-resolution scanning tunnelling microscopy (STM). Density functional theory calculations (DFT) were carried out to assign the observed features. The adsorptions occur exclusively on 5-fold coordinated Ti (Ti5c) sites and oxygen vacancies (OVs). The well-resolved configurations on the Ti5c sites feature the overlapping of the two "dumbbell" structures which are originated from the empty orbitals of HCHO. The STM images for the physical adsorption of HCHO on the OV sites appear fuzzy because of the rapid switching of HCHO among the three stable orientations, while those for the chemical adsorption are much clearer, revealing a distinctive difference between chemical and physical adsorptions. This work presents a systematic characterization of the topological features of HCHO/TiO2(110) and provides useful information for mechanical understanding of the reaction mechanism of HCHO on the surfaces.

2.
J Phys Chem Lett ; 7(4): 603-8, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26810945

RESUMO

Photoinduced water dissociation on rutile-TiO2 was investigated using various methods. Experimental results reveal that the water dissociation occurs via transferring an H atom to a bridge bonded oxygen site and ejecting an OH radical to the gas phase during irradiation. The reaction is strongly suppressed as the water coverage increases. Further scanning tunneling microscopy study demonstrates that hydrogen bonds between water molecules have a dramatic effect on the reaction. Interestingly, a single hydrogen bond in water dimer enhances the water dissociation reaction, while one-dimensional hydrogen bonds in water chains inhibit the reaction. Density functional theory calculations indicate that the effect of hydrogen bonds on the OH dissociation energy is likely the origin of this remarkable behavior. The results suggest that avoiding a strong hydrogen bond network between water molecules is crucial for water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...