Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 7(1): 834-43, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23249127

RESUMO

We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and Al(2)O(3) dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to a unique edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 10(4) A/cm(2). The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many applications in sensitive chemical and biological sensing, and energy storage devices.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletrodos , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Tamanho da Partícula , Porosidade
2.
ACS Nano ; 6(1): 441-50, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22165962

RESUMO

We report the development of a multilayered graphene-Al(2)O(3) nanopore platform for the sensitive detection of DNA and DNA-protein complexes. Graphene-Al(2)O(3) nanolaminate membranes are formed by sequentially depositing layers of graphene and Al(2)O(3), with nanopores being formed in these membranes using an electron-beam sculpting process. The resulting nanopores are highly robust, exhibit low electrical noise (significantly lower than nanopores in pure graphene), are highly sensitive to electrolyte pH at low KCl concentrations (attributed to the high buffer capacity of Al(2)O(3)), and permit the electrical biasing of the embedded graphene electrode, thereby allowing for three terminal nanopore measurements. In proof-of-principle biomolecule sensing experiments, the folded and unfolded transport of single DNA molecules and RecA-coated DNA complexes could be discerned with high temporal resolution. The process described here also enables nanopore integration with new graphene-based structures, including nanoribbons and nanogaps, for single-molecule DNA sequencing and medical diagnostic applications.


Assuntos
Óxido de Alumínio/química , Condutometria/instrumentação , Proteínas de Ligação a DNA/análise , DNA/análise , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Técnicas Biossensoriais/instrumentação , DNA/química , Proteínas de Ligação a DNA/química , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula , Porosidade
3.
Proc Natl Acad Sci U S A ; 107(48): 20691-6, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21068372

RESUMO

The characterization of physical properties of cells such as their mass and stiffness has been of great interest and can have profound implications in cell biology, tissue engineering, cancer, and disease research. For example, the direct dependence of cell growth rate on cell mass for individual adherent human cells can elucidate the mechanisms underlying cell cycle progression. Here we develop an array of micro-electro-mechanical systems (MEMS) resonant mass sensors that can be used to directly measure the biophysical properties, mass, and growth rate of single adherent cells. Unlike conventional cantilever mass sensors, our sensors retain a uniform mass sensitivity over the cell attachment surface. By measuring the frequency shift of the mass sensors with growing (soft) cells and fixed (stiff) cells, and through analytical modeling, we derive the Young's modulus of the unfixed cell and unravel the dependence of the cell mass measurement on cell stiffness. Finally, we grew individual cells on the mass sensors and measured their mass for 50+ hours. Our results demonstrate that adherent human colon epithelial cells have increased growth rates with a larger cell mass, and the average growth rate increases linearly with the cell mass, at 3.25%/hr. Our sensitive mass sensors with a position-independent mass sensitivity can be coupled with microscopy for simultaneous monitoring of cell growth and status, and provide an ideal method to study cell growth, cell cycle progression, differentiation, and apoptosis.


Assuntos
Tamanho Celular , Sistemas Microeletromecânicos/métodos , Técnicas Biossensoriais , Adesão Celular , Proliferação de Células , Células HT29 , Humanos , Fatores de Tempo
4.
Nat Mater ; 9(8): 667-75, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20651807

RESUMO

Synthetic solid-state nanopores are being intensively investigated as single-molecule sensors for detection and characterization of DNA, RNA and proteins. This field has been inspired by the exquisite selectivity and flux demonstrated by natural biological channels and the dream of emulating these behaviours in more robust synthetic materials that are more readily integrated into practical devices. So far, the guided etching of polymer films, focused ion-beam sculpting, and electron-beam lithography and tuning of silicon nitride membranes have emerged as three promising approaches to define synthetic solid-state pores with sub-nanometre resolution. These procedures have in common the formation of nominally cylindrical or conical pores aligned normal to the membrane surface. Here we report the formation of 'kinked' silica nanopores, using evaporation-induced self-assembly, and their further tuning and chemical derivatization using atomic-layer deposition. Compared with 'straight through' proteinaceous nanopores of comparable dimensions, kinked nanopores exhibit up to fivefold reduction in translocation velocity, which has been identified as one of the critical issues in DNA sequencing. Additionally, we demonstrate an efficient two-step approach to create a nanopore array exhibiting nearly perfect selectivity for ssDNA over dsDNA. We show that a coarse-grained drift-diffusion theory with a sawtooth-like potential can reasonably describe the velocity and translocation time of DNA through the pore. By control of pore size, length and shape, we capture the main functional behaviours of protein pores in our solid-state nanopore system.


Assuntos
Materiais Biocompatíveis/química , DNA/química , Nanocompostos/química , Nanoestruturas/química , Nanotecnologia/métodos , DNA de Cadeia Simples/química , Eletroquímica/métodos , Membranas Artificiais , Plasmídeos/metabolismo , Porosidade , Dióxido de Silício/química , Propriedades de Superfície , Temperatura
5.
Langmuir ; 23(26): 13209-22, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-17999544

RESUMO

Hybrid micro-nanofluidic interconnect devices can be used to control analyte transfer from one microchannel to the other through a nanochannel under rest, injection, and recovery stages of operation by varying the applied potential bias. Using numerical simulations based on coupled transient Poisson-Nernst-Planck and Stokes equations, we examine the electrokinetic transport in a gateable device consisting of two 100 microm long, 1 microm wide negatively charged microchannels connected by a 1 microm long, 10 nm wide positively charged nanochannel under both positive and negative bias potentials. During injection, accumulation of ions is observed at the micro-nano interface region with the positive potential and depletion of ions is observed at the other micro-nano junction region. Net space charge in the depletion region gives rise to nonlinear electrokinetic transport during the recovery stage due to induced pressure, induced electroosmotic flow of the second kind, and complex flow circulations. Ionic currents are computed as a function of time for both positive and negative bias potentials for the three stages. Analytical expressions derived for ion current variation are in agreement with the simulated results. In the presence of multiple accumulation or depletion regions, we show that a hybrid micro-nano device can be designed to function as a logic gate.


Assuntos
Microfluídica/instrumentação , Nanotecnologia , Eletricidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...