Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400538, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38759954

RESUMO

Osteosarcoma (OS) is a "cold" tumor enriched in noninflammatory M2 phenotype tumor-associated macrophages (TAMs), which limits the efficacy of immunotherapy. The acidic tumor microenvironment (TME), generated by factors such as excess hydrogen (H+) ions and high lactate levels, activates immunosuppressive cells, further promoting a suppressive tumor immune microenvironment (TIME). Therefore, a multitarget synergistic combination strategy that neutralizes the acidic TME and reprograms TAMs can be beneficial for OS therapy. Here, a calcium carbonate (CaCO3)/polydopamine (PDA)-based nanosystem (A-NPs@(SHK+Ce6)) is developed. CaCO3 nanoparticles are used to neutralize H+ ions and alleviate the suppressive TIME, and the loaded SHK not only synergizes with photodynamic therapy (PDT) but also inhibits lactate production, further reversing the acidic TME and repolarizing TAMs to consequently lead to enhanced PDT-induced tumor suppression and comprehensive beneficial effects on antitumor immune responses. Importantly, A-NPs@(SHK+Ce6), in combination with programmed cell death protein 1 (PD-1) checkpoint blockade, shows a remarkable ability to eliminate distant tumors and promote long-term immune memory function to protect against rechallenged tumors. This work presents a novel multiple-component combination strategy that coregulates the acidic TME and TAM polarization to reprogram the TIME.

2.
Mater Today Bio ; 23: 100800, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37766897

RESUMO

Repairing cartilage/subchondral bone defects that involve subchondral bone is a major challenge in clinical practice. Overall, the integrated repair of the structure and function of the osteochondral (OC) unit is very important. Some studies have demonstrated that the differentiation of cartilage is significantly enhanced by reducing the intake of nutrients such as lipids. This study demonstrates that using starvation can effectively optimize the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs). A hyaluronic acid (HA)-based hydrogel containing starved BMSCs-EVs displayed continuous release for more than 3 weeks and significantly promoted the proliferation and biosynthesis of chondrocytes around the defect regulated by the forkhead-box class O (FOXO) pathway. When combined with vascular inhibitors, the hydrogel inhibited cartilage hypertrophy and facilitated the regeneration of hyaline cartilage. A porous methacrylate gelatine (GelMA)-based hydrogel containing calcium salt loaded with thrombin rapidly promoted haematoma formation upon contact with the bone marrow cavity to quickly block the pores and prevent the blood vessels in the bone marrow cavity from invading the cartilage layer. Furthermore, the haematoma could be used as nutrients to accelerate bone survival. The in vivo experiments demonstrated that the multifunctional lineage-specific hydrogel promoted the integrated regeneration of cartilage/subchondral bone. Thus, this hydrogel may represent a new strategy for osteochondral regeneration and repair.

3.
Eur J Pharmacol ; 942: 175529, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36690054

RESUMO

Osteosarcoma is the most common primary bone malignancy in children and adolescents; it exhibits rapid growth and a high metastatic potential and may thus lead to relatively high mortality. The JAK2/STAT3 signaling pathway, which plays a critical role in the occurrence and development of osteosarcoma, is a potential target for the treatment of osteosarcoma. Here, we identified the natural product telocinobufagin (TCB), which is a component isolated from toad cake, as a potent candidate with anti-osteosarcoma effects. TCB inhibited osteosarcoma cell growth, migration, invasion and induced cancer cell apoptosis. Mechanistically, TCB specifically inhibited the JAK2/STAT3 signaling pathway. More importantly, TCB significantly suppressed tumor growth and metastasis in an osteosarcoma xenograft animal model. Moreover, TCB also showed strong inhibitory effects in other cancer types, such as lung cancer, liver cancer, colon cancer, breast cancer and gastric cancer. Hence, our study reveals TCB as a potent anti-osteosarcoma therapeutic agent that inhibits the JAK2/STAT3 signaling pathway.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Osteossarcoma/patologia , Neoplasias Ósseas/metabolismo , Janus Quinase 2/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Apoptose , Movimento Celular , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Biosci ; 12(1): 169, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209197

RESUMO

Osteosarcoma is the most common primary bone tumor, with a poor prognosis owing to the lack of efficient molecular-based targeted therapies. Previous studies have suggested an association between CD151 and distinct consequences in osteosarcoma tumorigenicity. However, the potential of CD151 as a therapeutic target has not yet been sufficiently explored. Here, we performed integrated transcriptomic and metabolomic analyses of osteosarcoma and identified sphingolipid metabolism as the top CD151-regulated pathway. CD151 regulates sphingolipid metabolism primarily through SPTCL1, the first rate-limiting enzyme in sphingolipid biosynthesis. Mechanistically, depletion of CD151 enhanced c-myc polyubiquitination and subsequent degradation. c-myc is vital for the transcriptional activation of SPTLC1. Functionally, sphingolipid synthesis and the SPTLC1 inhibitor, myriocin, significantly suppressed the clonogenic growth of CD151-overexpression cells. Importantly, myriocin selectively restrained CD151-high expression tumor growth in preclinical patient-derived xenograft models. Collectively, these data establish that CD151 is a key mediator of sphingolipid metabolism and provide a new approach to developing novel CD151-based targeted therapies for osteosarcoma.

5.
Front Bioeng Biotechnol ; 10: 911455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875497

RESUMO

Background: Drugs based on synthetic lethality have advantages such as inhibiting tumor growth and affecting normal tissue in vivo. However, specific targets for osteosarcoma have not been acknowledged yet. In this study, a non-targeted but controllable drug delivery system has been applied to selectively enhance synthetic lethality in osteosarcoma in vitro, using the magnetic-driven hydrogel microrobots. Methods: In this study, EPZ015666, a PRMT5 inhibitor, was selected as the synthetic lethality drug. Then, the drug was carried by hydrogel microrobots containing Fe3O4. Morphological characteristics of the microrobots were detected using electron microscopy. In vitro drug effect was detected by the CCK-8 assay kit, Western blotting, etc. Swimming of microrobots was observed by a timing microscope. Selective inhibition was verified by cultured tumors in an increasing magnetic field. Results: Genomic mutation of MTAP deletion occurred commonly in pan-cancer in the TCGA database (nearly 10.00%) and in osteosarcoma in the TARGET database (23.86%). HOS and its derivatives, 143B and HOS/MNNG, were detected by MTAP deletion according to the CCLE database and RT-PCR. EPZ015666, the PRMT5 inhibitor, could reduce the SDMA modification and inhibition of tumor growth of 143B and HOS/MNNG. The hydrogel microrobot drug delivery system was synthesized, and the drug was stained by rhodamine. The microrobots were powered actively by a magnetic field. A simulation of the selected inhibition of microrobots was performed and lower cell viability of tumor cells was detected by adding a high dose of microrobots. Conclusion: Our magnetic-driven drug delivery system could carry synthetic lethality drugs. Meanwhile, the selective inhibition of this system could be easily controlled by programming the strength of the magnetic field.

6.
Chin Med ; 17(1): 18, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123541

RESUMO

BACKGROUND: Osteoarthritis (OA) is widely recognized as the most common chronic joint disease accompanied by progressive cartilage and subchondral bone damage. Toddalolactone (TOD), a natural compound extracted from Toddalia asiatica (L.) Lam., has been widely used in the treatment of stroke, rheumatoid arthritis, and oedema. Nevertheless, what TOD acts as in the pathogenesis and progression of OA hasn't been reported. In this investigation, we have aimed to determine how TOD affects OA in vitro and in vivo. METHODS: LPS (10 µg/ml) and IL-1ß (10 ng/ml) were employed to induce chondrocyte inflammation or RANKL to induce osteoclast differentiation in bone marrow derived macrophages (BMMs). The effects of TOD on chondrocyte inflammation and osteoclast differentiation were evaluated. Anterior cruciate ligament transection (ACLT) was performed to develop an OA animal model and study the effects of TOD. RESULTS: We found that TOD inhibited the expression of inflammatory and catabolic mediators (IL-6, IL-8, TNF-α, MMP2, MMP9, and MMP13) in inflammatory chondrocytes in vitro. Furthermore, TOD was proven to inhibit RANKL-induced-osteoclastogenesis and inhibit the expression of osteoclast marker genes. Our data also confirmed that TOD suppressed the destruction of articular cartilage and osteoclastogenesis via inhibiting the activation of NF-κB and MAPK signalling pathways. In the ACLT mouse model, we found that TOD attenuated cartilage erosion and inhibited bone resorption. CONCLUSIONS: These results showed that TOD can be adopted as a potential therapeutic agent for OA.

7.
Front Oncol ; 11: 642134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168981

RESUMO

Osteosarcoma is the most common primary malignant bone tumor, and there are few ideal clinically available drugs. The bromodomain and extraterminal domain (BET) protein is an emerging target for aggressive cancer, but therapies targeting the BET in osteosarcoma have been unsuccessful in clinical trials to date, and further exploration of specific BET inhibitors is of great significance. In our study, we demonstrated that NHWD-870, a potent BET inhibitor in a phase I clinical trial, significantly inhibited tumor proliferation and promoted cell apoptosis by reversing the oncogenic signature in osteosarcoma. More importantly, we identified NHWD-870 impeded binding of BRD4 to the promoter of GP130 leading to diminished activation of JAK/STAT3 signaling pathway. Furthermore, GP130 knockdown significantly sensitizes the chemosensitivity in vitro. In OS cell-derived xenografts, NHWD-870 effectively inhibited the growth of osteosarcoma. Beyond that, NHWD-870 effectively inhibited the differentiation and maturation of precursor osteoclasts in vitro and attenuated osteoclast-mediated bone loss in vivo. Finally, we confirmed the efficacy of synthetic lethal effects of NHWD-870 and cisplatin in antagonizing osteosarcoma in a preclinical PDX model. Taken together, these findings demonstrate that NHWD-870, as an effective BET inhibitor, may be a potential candidate for osteosarcoma intervention linked to its STAT3 signaling inhibitory activity. In addition, NHWD-870 appears to be a promising therapeutic strategy for bone-associated tumors, as it interferes with the vicious cycle of tumor progression and bone destruction.

8.
Microbiol Res ; 245: 126673, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33429287

RESUMO

Fusarium head blight (FHB) disease caused by Fusarium graminearum (Fg) seriously affects the yield and quality of wheat. In this study, after bacterial community analysis of two wheat rhizosphere soils, the genus Pseudomonas was shown to be enriched in normal dry farmland (maize-wheat rotation) compared to that observed nearby paddy farmland (rice-wheat rotation) with serious FHB disease. Subsequently, a P. aeruginosa strain, NF011 with the highest antagonistic activity against Fg and excellent tolerance to 8.0 % of NaCl was isolated from the wheat rhizosphere soil in the normal dry farmland. Dual culture assay results showed that NF011 is a broad-spectrum fungicide for controlling six wheat pathogenic fungi. The major antifungal compound produced by NF011 was identified as phenazine-1-carboxamide (PCN) by LC-MS and nuclear magnetic resonance. 1.0 × 108 CFU/mL of NF011 or 32 mg/L of PCN could completely inhibit Fg spore germination and resulted in the destruction of Fg hypha vacuoles. Mannitol, peanut meal, beef extract, metal ions (Mn2+, Ca2+, Fe2+, and Mg2+), and amino acids (Arg and Lys) could promote the production of PCN by NF011, moreover, the optimal pH and temperature was 6.0 and 20 °C. The PCN produced by NF011 under the optimized culture conditions reached 436.55 ± 11.06 mg/L, 4.90-fold higher than that observed under the basic culture conditions. Finally, infection experiment results showed that NF011 can effectively prevent Fg spores from infecting wheat spikes and wheat grains and suppress the production of deoxynivalenol (DON). Therefore, the salt-tolerant PCN-producing NF011 has the potential to control wheat fungal disease.


Assuntos
Antibiose , Fusarium/fisiologia , Fenazinas/metabolismo , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Tolerância ao Sal , Triticum/microbiologia , Agricultura/métodos , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Agentes de Controle Biológico/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas aeruginosa/genética , Rizosfera
9.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912908

RESUMO

Rahnella aquatilis strain MEM40 is a plant growth-promoting rhizobacterium (PGPR) with antagonism against Magnaporthe oryzae and Fusarium graminearum that was isolated from rice rhizosphere soil in Hubei, China. Here, we report its complete genome sequence, which will increase our understanding of the mechanisms of plant growth promotion and biocontrol.

10.
Onco Targets Ther ; 13: 119-129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021260

RESUMO

BACKGROUND: The immunosuppressive facet and tumorigenic role of TNF-α have been revealed in osteosarcoma (OS). Long noncoding RNA THRIL is identified to regulate TNF-α expression and participates in immune response. Thus, investigations on the clinical expression pattern of THRIL/TNF-α signal in OS would provide a potential target premise for OS patients. METHODS: We collected OS (n=83), nontumor tissues (n=37) and serum samples (n=83 for OS and n=40 for healthy control) to determine the expressions and clinical significance of THRIL/TNF-α signal. Knockdown of THRIL in OS cell lines MG63 and Saos2 in vitro and in vivo was performed to confirm its function in the development of OS. RESULTS: Elevated expression of THRIL was associated with increased TNF-α levels in OS tissues and serum samples. Combination of THRIL and TNF-α in tissues showed a more efficient diagnostic value for OS patients than either of them. Moreover, high-expressed THRIL was associated with larger tumor size, advanced Enneking stage and lung metastasis, whereas high TNF-α expression was found in patients with high histologic grade and patients who simultaneously harbor high THRIL and TNF-α showed the worst overall survival and metastasis-free survival. TNF-α signals increased OS cell vitalities in vitro but knockdown of THRIL inhibited TNF-α expressions, leading to impaired cell vitality, increased apoptosis and also downregulated epithelial to mesenchymal transition (EMT) phenotype and the ability of invasion, but these processes were restored by the treatment of TNF-α. The oncogenic role of THRIL/TNF-α signal was also confirmed in the xenograft model of MG63 cells. CONCLUSION: Overexpressed THRIL and TNF-α promoted OS progression with efficient diagnostic and prognostic value. THRIL/TNF-α signal supported cell growth and EMT phenotype of OS cells in vitro and in vivo.

11.
Biomed Pharmacother ; 121: 109659, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31739161

RESUMO

Costunolide, an active sesquiterpene lactone, is derived from a number of medicinal plants and it exhibits a broad spectrum of bioactivities such as anti-inflammatory and potential anti-tumor activity. However, its effects on human osteosarcoma and the underlying mechanisms have not yet been evaluated. Here, we found Costunolide inhibits STAT3 transcriptional activity and the expression level of phospho-STAT3 (Tyr-705). Furthermore, we found Costunolide suppresses STAT3 downstream target genes expression. Finally, our data demonstrated Costunolide inhibits osteosarcoma growth and metastasis in vitro and in vivo. Therefore, our studyprovided the first evidence that Costunolide inhibits osteosarcomagrowth and metastasis by impairing STAT3 signal pathway and Costunolide is a potential candidate in osteosarcoma therapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Osteossarcoma/metabolismo
12.
Orthopade ; 48(2): 165-169, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30310936

RESUMO

The aim of this study was to assess the efficacy of the Wallis interspinous device for treating lumbar disc herniation (LDH) as well as to investigate whether the device could reduce the incidence of recurrent herniation in comparison with disc excision alone. A total of 72 patients with LDH were treated with primary discectomy and the Wallis interspinous device was implanted in 36. Clinical outcomes were evaluated with a visual analog scale (VAS) for low back and leg pain and the Oswestry Disability Index (ODI) before and after surgery. The incidence of recurrent disc herniation after the operation was also evaluated. There was a significant improvement (p < 0.01) in the clinical outcomes assessed by the VAS and ODI scores compared with preoperative values in both groups. Up to the final follow-up, there were no significant differences between the two groups in VAS and ODI scores (p > 0.05). In addition, there was no significant difference regarding the incidence of recurrent disc herniation between the two groups (13.9% vs. 16.6%, p > 0.05). Of the patients five underwent second discectomy or fusion surgery. The Wallis interspinous device was unable to improve the already good clinical outcome after discectomy for LDH and prevent or reduce recurrence of herniated disc in the current follow-up interval. Whether the device for should be used for LDH should be carefully considered before surgery.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Adulto , Discotomia , Feminino , Humanos , Vértebras Lombares , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
13.
Med Sci Monit ; 23: 2089-2095, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28461686

RESUMO

BACKGROUND Several studies have described the differences in electromyographic activity and histological changes of paravertebral muscles in patients with adolescent idiopathic scoliosis (AIS). However, there is little knowledge about the muscle volumetric and fatty infiltration imbalance of patients with AIS. MATERIAL AND METHODS Thirty-four patients with AIS were evaluated with standardized anteroposterior (AP) and lateral standing films for the location and direction of the apex of scoliosis, coronal Cobb angle, apex vertebra translation, and thoracic kyphosis; and with magnetic resonance imaging (MRI) scan of the spine at the level of T4-L1. The muscle volume and fatty infiltration rate of bilateral deep paravertebral muscles at the level of upper end, apex, and lower end vertebra were measured. RESULTS All patients had major thoracic curve with apex of curves on the right side. The muscle volume on the convex side was larger relative to the concave side at the three levels, while the fatty infiltration rate was significantly higher on the concave side. The difference index of the muscle volume was significantly larger at the apex vertebra level than at the upper end vertebra level (p=0.002) or lower end vertebra level (p<0.001). The difference index of muscle volume correlated with apex vertebra translation (r=-0.749, p=0.032), and the difference index of fatty involution correlated with apex vertebra translation (r=0.727, p=0.041) and Cobb angle (r=0.866, p=0.005). CONCLUSIONS Our findings demonstrated significant imbalance of muscle volume and fatty infiltration in deep paravertebral muscles of AIS patients. Moreover, these changes affected different vertebra levels, with the most imbalance of muscle volume at the apex vertebra. We interpreted this as morphological changes corresponding with known altered muscle function of AIS.


Assuntos
Músculo Esquelético/patologia , Escoliose/metabolismo , Vértebras Torácicas/patologia , Tecido Adiposo/metabolismo , Adolescente , Criança , Feminino , Humanos , Cifose/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Postura , Coluna Vertebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...