Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13490, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866939

RESUMO

In this study, polyurethane (PU) foams were manufactured using kraft lignin and castor oil as bio-based polyols by replacing 5-20 wt% and 10-100 wt% of conventional polyol, respectively. To investigate the effects of unmodified bio-based polyols on PU foam production, reactivity and morphology within PU composites was analyzed as well as mechanical and thermal properties of the resulting foams. Bio-based PU foam production was carried out after characterizing the reagents used in the foaming process (including hydroxyl group content, molecular weight distribution, and viscosity). To compare the resulting bio-based PU foams, control foam were produced without any bio-based polyol under the same experimental conditions. For lignin-incorporated PU foams, two types, LPU and lpu, were manufactured with index ratio of 1.01 and 1.3, respectively. The compressive strength of LPU foams increased with lignin content from 5 wt% (LPU5: 147 kPa) to 20 wt% (LPU20: 207 kPa), although it remained lower than that of the control foam (PU0: 326 kPa). Similarly, the compressive strength of lpu foams was lower than that of the control foam (pu0: 441 kPa), with values of 164 kPa (lpu5), 163 kPa (lpu10), 167 kPa (lpu15), and 147 kPa (lpu20). At 10 wt% lignin content, both foams (LPU10 and lpu10) exhibited the smallest and most homogenous pore sizes and structures. For castor oil-incorporated PU foams with an index of 1.01, denoted as CPU, increasing castor oil content resulted in larger cell sizes and void fractions, transitioning to an open-cell structure and decreasing the compressive strength of the foams from 284 kPa (CPU10) to 23 kPa (CPU100). Fourier transform infrared (FT-IR) results indicated the formation of characteristic urethane linkages in PU foams and confirmed that bio-based polyols were less reactive with isocyanate compared to traditional polyol. Thermogravimetric analysis (TGA) showed that incorporating lignin and castor oil affected the thermal decomposition behavior. The thermal stability of lignin-incorporated PU foams improved as the lignin content increased with char yields increasing from 11.5 wt% (LPU5) to 15.8 wt% (LPU20) and from 12.4 wt% (lpu5) to 17.5 wt% (lpu20). Conversely, the addition of castor oil resulted in decreased thermal stability, with char yields decreasing from 10.6 wt% (CPU10) to 4.2 wt% (CPU100). This research provides a comprehensive understanding of PU foams incorporating unmodified biomass-derived polyols (lignin and castor oil), suggesting their potential for value-added utilization as bio-based products.

2.
Waste Manag ; 144: 41-48, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35306464

RESUMO

The efficient strategy for waste conversion and resource recovery is of great interest in the sustainable bioeconomy context. This work reports on the catalytic upcycling of waste corrugated cardboard (WCC) into lactic acid using lanthanide triflates catalysts. WCC, a primary contributor to municipal solid wastes, has been viewed as a feedstock for producing a wide range of renewable products. Hydrothermal conversion of WCC was carried out in the presence of several lanthanide triflates. The reaction with erbium(III) triflate (Er(OTf)3) and ytterbium(III) triflate (Yb(OTf)3) resulted in high lactic acid yields, 65.5 and 64.3 mol%, respectively. In addition, various monomeric phenols were readily obtained as a co-product stream, opening up opportunities in waste management and resource recovery. Finally, technoeconomic analysis was conducted based on the experimental results, which suggests a significant economic benefit of chemocatalytic upcycling of WCC into lactic acid.


Assuntos
Elementos da Série dos Lantanídeos , Gerenciamento de Resíduos , Catálise , Ácido Láctico , Resíduos Sólidos/análise
3.
Plant Biotechnol J ; 20(4): 736-747, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34786790

RESUMO

Drought is a common abiotic stress for terrestrial plants and often affects crop development and yield. Recent studies have suggested that lignin plays a crucial role in plant drought tolerance; however, the underlying molecular mechanisms are still largely unknown. Here, we report that the rice (Oryza sativa) gene CINNAMOYL-CoA REDUCTASE 10 (OsCCR10) is directly activated by the OsNAC5 transcription factor, which mediates drought tolerance through regulating lignin accumulation. CCR is the first committed enzyme in the monolignol synthesis pathway, and the expression of 26 CCR genes was observed to be induced in rice roots under drought. Subcellular localisation assays revealed that OsCCR10 is a catalytically active enzyme that is localised in the cytoplasm. The OsCCR10 transcript levels were found to increase in response to abiotic stresses, such as drought, high salinity, and abscisic acid (ABA), and transcripts were detected in roots at all developmental stages. In vitro enzyme activity and in vivo lignin composition assay suggested that OsCCR10 is involved in H- and G-lignin biosynthesis. Transgenic rice plants overexpressing OsCCR10 showed improved drought tolerance at the vegetative stages of growth, as well as higher photosynthetic efficiency, lower water loss rates, and higher lignin content in roots compared to non-transgenic (NT) controls. In contrast, CRISPR/Cas9-mediated OsCCR10 knock-out mutants exhibited reduced lignin accumulation in roots and less drought tolerance. Notably, transgenic rice plants with root-preferential overexpression of OsCCR10 exhibited higher grain yield than NT controls plants under field drought conditions, indicating that lignin biosynthesis mediated by OsCCR10 contributes to drought tolerance.


Assuntos
Oryza , Aldeído Oxirredutases , Secas , Regulação da Expressão Gênica de Plantas/genética , Lignina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Ativação Transcricional
4.
Int J Biol Macromol ; 183: 660-667, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33957201

RESUMO

This study aimed to determine the effects of lignin characteristics (mainly molecular weight, functional groups, and internal linkages) on nanoparticle formation. First, five different lignin fractions (Mw 1460-12,900) were obtained from commercial kraft lignin (KL) by sequential solvent extraction. Functional groups and internal linkages were determined in lignin fractions, each fraction consisting of different levels and ratios. Second, spherical lignin nanoparticles (i.d. 193-1039 nm) were synthesized by nanoprecipitation at different pre-dialysis concentrations (1, 2, 4, and 6 mg mL-1 THF) with the different fractions (F1, F2, F3, F4, and F5). The study revealed that larger particles consisted of lignin fractions of lower molecular weight and higher phenolic group content (KL-F1 and F2), while smaller but non-uniform particles were produced from fractions of higher molecular weight and lower phenolic group content (KLF4 and F5). Every zeta potential value of the particle exceeded -35 mV. The nanoparticles from raw kraft lignin exhibited no significant cytotoxicity, hemotoxicity, and hypersensitivity. This study revealed that molecular weight and hydroxyl group content in the lignin highly correlated with nanoparticle properties. The present kraft lignin nanoparticles have potential for use in various polymer-based nanotechnology.


Assuntos
Materiais Biocompatíveis , Lignina/química , Nanopartículas , Solventes/química , Células A549 , Animais , Sobrevivência Celular/efeitos dos fármacos , Coloides , Hipersensibilidade a Drogas/imunologia , Hemólise/efeitos dos fármacos , Humanos , Imunoglobulina E/sangue , Fator 4 Semelhante a Kruppel , Lignina/toxicidade , Camundongos , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...