Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083350

RESUMO

In modern times, earbuds have become both popular and essential accessories for people to use with a wide range of devices in their everyday lives. Moreover, the respiration rate is a crucial vital sign that is sensitive to various pathological conditions. Many earbuds now come equipped with multiple sensing capabilities, including inertial and acoustic sensors. These sensors can be used by researchers to passively monitor users' vital signs, such as respiration rates. While current earbud-based breath rate estimation algorithms mostly focus on resting conditions, recent studies have demonstrated that respiration rates during physical activities can predict cardio-respiratory fitness for healthy individuals and pulmonary conditions for respiratory patients. To address this gap, we propose a novel algorithm called RRDetection that leverages the motion sensors in ordinary earbuds to detect respiration rates during light to moderate physical activities.


Assuntos
Exercício Físico , Taxa Respiratória , Humanos , Sinais Vitais , Algoritmos , Movimento (Física)
2.
J Control Release ; 362: 396-408, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657692

RESUMO

Tumor recurrence mainly triggered by tumor residual cells significantly contributes to mortality following breast tumor resection, and meanwhile post-surgical bacterial wound infections may accelerate tumor recurrence due to a series of infection-related complications. In this study, a nano-sensor system, Van-ICG@PLT, is constructed by a membrane camouflage and small molecule drug self-assembly strategy. This nano-sensor harnesses the innate tropism of platelets (PLT) to deliver vancomycin (Van) and indocyanine green (ICG) to surgical incisions, effectively eliminating both residual tumor cells and bacterial infections. Our findings demonstrate that Van-ICG@PLT preferentially accumulates at surgical wound. Under near-infrared (NIR) laser irradiation, Van-ICG@PLT exhibits significant cytotoxicity against 4T1 cells. Additionally, it is found to significantly promote ROS production thus inhibiting Staphylococcus aureus (S. aureus) growth, underscoring the synergistic benefits of phototherapy in combination with antibiotic treatment. In the 4T1 post-surgery recurrence mice model, Van-ICG@PLT is shown to efficiently ablate tumors in tumor-bearing mice (tumor inhibition rate of about 83%), and it demonstrates an excellent anti-infective effect in mice abscess models. Taken together, Van-ICG@PLT represents a promising paradigm in post-surgical adjuvant therapy (PAT). Its dual benefit in inhibiting cancer growth and promoting antibacterial activity makes Van-ICG@PLT a valuable addition to the existing arsenal of therapeutic options available for breast cancer patients.

3.
J Control Release ; 340: 87-101, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662587

RESUMO

Detrimental tumor microenvironment (TME) relies on distorted tumor vasculature for further tumor expansion. Vascular normalization therapy partly improves TME through vessel repairing, while these therapies enter an unbreakable Möbius ring due to each attempt hindered by pro-angiogenic factors from TME, leading to limited duration and extent of vascular normalization. Here, we developed a nanosystem including FLG and MAR/MPA nanodrugs to regulate both tumor vasculature and TME. FLG nanodrugs were constructed by connecting VEGF/VEGFR2 inhibitory low molecular weight heparin and gambogic acid with F3 peptide decoration for directly regulating on vascular endothelial cells and inducing vascular normalization. Meanwhile, MAR/MPA nanodrugs encapsulating CCL5/CCR5 blocker maraviroc were designed to restrict cytokine functions of angiogenesis and TME deterioration, contributing to vasculature repairing and TME reconstruction. Our results demonstrated this combined nanosystem synergistically induced vascular normalization window lasting 9 days and restored vascular permeability and oxygen supply in Panc-1 tumor. Furthermore, in melanoma, our nanosystem achieved immune improvements with increased infiltration of CD4+ and CD8+T cells in a remodeled TME. The two nanodrugs assisting each other in terms of both vascular repairing and TME improvements successfully reversed the vicious crosstalk to a positive one, achieving overall TME remodeling and promoting therapeutic efficiency.


Assuntos
Neoplasias , Microambiente Tumoral , Células Endoteliais , Heparina de Baixo Peso Molecular , Humanos , Neovascularização Patológica/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...