Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202403661, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38613727

RESUMO

The development of highly producible and interfacial compatible in situ polymerized electrolytes for solid-state lithium metal batteries (SSLMBs) have been plagued by insufficient transport kinetics and uncontrollable dendrite propagation. Herein, we seek to explore a rationally designed nanofiber architecture to balance all the criteria of SSLMBs, in which La0.6Sr0.4CoO3-δ (LSC) enriched with high valence-state Co species and oxygen vacancies is developed as electronically conductive nanofillers embedded within ZnO/Zn3N2-functionalized polyimide (Zn-PI) nanofiber framework for the first time, to establish Li+ transport highways for poly vinylene carbonate (PVC) electrolyte and eliminate nonuniform Li deposits. Revealed by characterization and theoretical calculation under electric field, the positive-negative electrical dipole layer in LSC derived from electron migration between Co and O atoms aids in accelerating Li+ diffusion kinetics through densified electric field around filler particle, featuring a remarkable ionic conductivity of 1.50 mS cm-1 at 25 °C and a high Li+ transference number of 0.91 without the risk of electron leakage. Integrating with the preferential sacrifice of ZnO/Zn3N2 on PI nanofiber upon immediate detection of dendritic Li, which takes part in reconfiguring hierarchical SEI chemistry dominated by LixNy/Li-Zn alloy inner layer and LiF outer layer, SSLMBs are further endowed with prolonged cycling lifespan and exceptional rate capability.

2.
BMC Cancer ; 24(1): 238, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383342

RESUMO

BACKGROUND: Long noncoding RNA thymopoietin-antisense RNA 1 (TMPO-AS1) is recognized as a participant in cancer progression. Nevertheless, its biological function in colorectal cancer remains obscure and needs further elucidation. METHODS AND RESULTS: First, we discovered enriched TMPO-AS1 in the tumor tissues that were related to poor prognosis. TMPO-AS1 knockdown enhanced SW480 cell apoptosis but inhibited invasion, proliferation, migration, and glucose metabolism. Further, MiR-1270 is directly bound with TMPO-AS1. MiR-1270 mimics were confirmed to inhibit cell proliferation, invasion, and glucose metabolism in our study. Mechanistically, miR-1270 directly is bound with the 3' untranslated regions (3'UTR) of PKM2 to downregulate PKM2. MiR-1270 inhibitors reversed the TMPO-AS1 knockdown's effect on suppressing the tumor cell proliferation, invasion, and glycolysis, while the knockdown of PKM2 further inverted the function of miR-1270 inhibitors on the TMPO-AS1 knockdown. CONCLUSIONS: This study illustrated that TMPO-AS1 advanced the development and the glycolysis of colorectal cancer by modulating the miR-1270/PKM2 axis, which provided a new insight into the colorectal cancer therapeutic strategy.


Assuntos
Neoplasias Colorretais , Óxidos N-Cíclicos , MicroRNAs , RNA Longo não Codificante , Timopoietinas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glucose , Glicólise/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Timopoietinas/genética , Timopoietinas/metabolismo
3.
Cancer Med ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197582

RESUMO

BACKGROUND: Colorectal cancer (CRC), known as prevalent cancer, has risen to be the leading cause of cancer-related death. Engineered exosomes had attracted much attention since they acted as carriers to deliver small molecule drugs, therapeutic nucleic acids, and polypeptides to treat a series of cancers. METHODS AND RESULTS: Here, we found that the PKH-26 labeled exosomes, which were derived from the CRC cells, could be efficiently absorbed by SW1116 cells and had an abundant fluorescence distribution in tumors, compared with the exosomes derived from mesenchymal stem cells (MSC) and HepG2 cells. This Research demonstrated that engineered CRC-exosomes loaded with functional miR-1270 (Exo-miR-1270) enriched in miR-1270 strongly inhibited the proliferation by CCK-8 and EdU assays, migration by wound-healing and transwell assays, and promoted the apoptosis for CRC cells through flow cytometry. MiR-1270 overexpression delivered by CRC exosomes contributed to inhibiting the tumor growth potential of CRC in vivo and increasing the overall survival of the mice. Moreover, the safety evaluation results showed that CRC-exosomes loaded with functional miR-1270-mimics had no toxicity for other organs by histopathological analysis and no influence on the vital chemistry and hematology parameters for mice in vivo safety evaluation. CONCLUSION: These results indicate that Exo-miR-1270 can effectively treat CRC tumors by intravenous administration. Our work provided a foundation that the homologous tumor-derived exosomes mediated miRNA delivery for the treatment of CRC.

4.
Small ; : e2307942, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054774

RESUMO

Employing nanofiber framework for in situ polymerized solid-state lithium metal batteries (SSLMBs) is impeded by the insufficient Li+ transport properties and severe dendritic Li growth. Both critical issues originate from the shortage of Li+ conduction highways and nonuniform Li+ flux, as randomly-scattered nanofiber backbone is highly prone to slippage during battery assembly. Herein, a robust fabric of Li0.33 La0.56 Ce0.06 Ti0.94 O3-δ /polyacrylonitrile framework (p-LLCTO/PAN) with inbuilt Li+ transport channels and high interfacial Li+ flux is reported to manipulate the critical current density of SSLMBs. Upon the merits of defective LLCTO fillers, TFSI- confinement and linear alignment of Li+ conduction pathways are realized inside 1D p-LLCTO/PAN tunnels, enabling remarkable ionic conductivity of 1.21 mS cm-1 (26 °C) and tLi+ of 0.93 for in situ polymerized polyvinylene carbonate (PVC) electrolyte. Specifically, molecular reinforcement protocol on PAN framework further rearranges the Li+ highway distribution on Li metal and alters Li dendrite nucleation pattern, boosting a homogeneous Li deposition behavior with favorable SEI interface chemistry. Accordingly, excellent capacity retention of 76.7% over 1000 cycles at 2 C for Li||LiFePO4 battery and 76.2% over 500 cycles at 1 C for Li||LiNi0.5 Co0.2 Mn0.3 O2 battery are delivered by p-LLCTO/PAN/PVC electrolyte, presenting feasible route in overcoming the bottleneck of dendrite penetration in in situ polymerized SSLMBs.

5.
Inorg Chem ; 61(3): 1349-1359, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34995465

RESUMO

In this work, a novel luminescent hybrid material with double emission centers (Eu(TTA)0.2@9-1-UMOF) is successfully prepared, adopting a feasible design strategy. Initially, the second ligand 1,2,4-benzenetricarboxylic acid (H3BTC) is encapsulated based on a solid solution approach, which effectively improves the ligand-based emission intensity of the original LMOF and provides functional sites for introducing the second luminescent center; then, Eu3+ as the red emission source is loaded into the frameworks through a coordination post-synthetic modification method; finally, to balance the emission intensity at 613 nm (Eu3+) and 465 nm (1,4-naphthalenedicarboxylic acid (H2NDC)), 2-thenoyltrifluoroacetone (TTA) as a powerful antenna is introduced. Given the outstanding luminescence properties and structural stability of Eu(TTA)0.2@9-1-UMOF, it is further developed as a ratiometric sensor for detecting 1-hydroxypyrene (1-HP, the biomarker of polycyclic aromatic hydrocarbons (PAHs)) and Cu2+, which promotes the pre-diagnosis of human health. Notably, Eu(TTA)0.2@9-1-UMOF exhibits excellent selective recognition ability for both 1-HP and Cu2+ with high sensitivity (LOD = 4.06 × 10-6 mg/mL, 3.85 × 10-7 mol/L, respectively) and fast response speed. In addition, Eu(TTA)0.2@9-1-UMOF as a fluorescent probe shows great potential for the determination of 1-HP and Cu2+ in actual samples. More importantly, this work widens the road for the development of dual/multiple LMOF-based sensors for analytical applications.

6.
Talanta ; 227: 122209, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714456

RESUMO

4-Aminophenol (4-AP), which is a biomarker of aniline and represents the internal dose of aniline exposure in the human body, has attracted much attention for its detection in recent years. In this work, a bi-functionalized luminescent metal-organic framework (MOF), Eu@MOF-253-CH3, is designed and prepared through encapsulating the methyl groups and the Eu3+ cations into MOF-253 based on post-synthetic modification strategy. This study shows that the bi-functionalized Eu@MOF-253-CH3 can specifically recognize 4-AP upon luminescence quenching, while refraining from the interference of other coexisting species in urine. The Eu@MOF-253-CH3 hybrid as a 4-AP sensor also displays excellent performances including high water tolerance, good pH-independent stability, fast response, great selectivity and elevated sensitivity (0.5 µg mL-1) attributed to N-viologenized ligand. These results suggest the bi-functionalized Eu@MOF-253-CH3 can act as a promising sensor to practically monitor 4-AP's concentrations in human urine system, and then to realize the screening and pre-diagnosis of human health. Moreover, the possible sensing mechanisms are further explored at length.


Assuntos
Estruturas Metalorgânicas , Aminofenóis , Biomarcadores , Humanos , Metilação
7.
Nanoscale ; 12(17): 9581-9589, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32315015

RESUMO

A novel 3D N- & S-co-doped carbon nanofiber network embedded with ultrafine NiCo oxide nanoparticles is explored by a facile surfactant-assisted electrospinning method. This catalyst has several structural advantages including ultrafine active sites (2-8 nm), hierarchical pores, and abundant defects, allowing for much higher OER/ORR activity compared to commercial IrO2 and Pt/C catalysts. The potential gap (ΔE) of OER and ORR metrics for NSCFs/Ni-Co-NiCo2O is 0.69 V and the Zn-air battery equipped with NSCFs/Ni-Co-NiCo2O as the air cathode delivers a maximum power density of 171.24 mW cm-2 at 268 mA cm-2. Furthermore, the unique structure of the 3D carbon nanofiber network embedded with ultrafine nanoparticles results in superior stability with negligible degradation in activity after 380 h of continuous operation.

8.
J Inorg Biochem ; 191: 194-202, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553076

RESUMO

Four new triphenyltin(IV) acylhydrazone compounds of the type Ph3SnCH2CH2CONHN=R (where Ph = phenyl; R = isopropyl, isobutyl, cyclopentyl and cyclooctyl) were synthesized and characterized by elemental analysis, infrared spectrum (IR), nuclear magnetic resonance spectrum (NMR) and mass spectrum (MS). The crystal structures were determined and showed that tin atoms were four-coordinated and adopted a pseudo-tetrahedron configuration. Tin(IV) compounds show excellent bovine serum albumin (BSA) binding properties, and can oxidize nicotinamide-adenine dinucleotid (NADH) to generate reactive oxygen species (ROS), which inducing apoptosis effectively. Bioassay results indicated that tin(IV) compounds have stronger cytotoxic activity against A549 human lung cancer cells compared with cis-platin used clinically, and showing some selectivity.


Assuntos
Hidrazonas/química , Hidrazonas/farmacologia , Compostos Orgânicos de Estanho/química , Células A549 , Apoptose/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Hidrazonas/síntese química , Estrutura Molecular , Relação Estrutura-Atividade
9.
World J Gastroenterol ; 12(32): 5148-52, 2006 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-16937524

RESUMO

AIM: To assess the feasibility of using BRAF, K-ras and BAT26 genes as stool-based molecular markers for detection of colorectal adenomas and hyperplastic polyps (HPs). METHODS: We applied PCR-SSCP and direct sequencing to detect BRAF mutations of polyps and paired stool samples. Primer-mediated restriction fragment length polymorphism (RFLP) analysis and mutant-enriched PCR were used in detection of K-ras mutations of polyp tissues and paired stool samples respectively. BAT26, a microsatellite instability marker was examined by detection of small unstable alleles in a poly (A) repeat. RESULTS: No genetic alterations were detected in the 36 colonoscopically normal patients in either tissues or stools. BRAF, K-ras and BAT26 mutations were found in 4 (16%), 10 (40%) and 3 (12%) of 25 adenoma tissues and among them, 75%, 80% and 100% of patients were observed to contain the same mutations in their corresponding stool samples. In HPs, mutations of BRAF and K-ras were detected in the tumor DNA of 2 (11.1%) and 8 (33.3%) of 18 patients respectively, all of whom had identical alterations in their stools. Taken together, the three genetic markers detected 15 (60%) of 25 adenomas and 8 (44.4%) of 18 HPs. The sensitivity of stool detection was 80% for adenomas and 100% for HPs with an overall specificity of 92% for adenomas and 100% for HPs. CONCLUSION: BRAF, K-ras and BAT26 genes have the potential to be molecular markers for colorectal adenomas and HPs, and can be used as non-invasive screening markers for colorectal polyps.


Assuntos
Biomarcadores Tumorais/biossíntese , Pólipos do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/biossíntese , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas ras/biossíntese , Adulto , Idoso , Biomarcadores Tumorais/genética , Fezes , Feminino , Marcadores Genéticos , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...