Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
3.
Cell Death Dis ; 9(10): 1013, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598523

RESUMO

Glucocorticoids (GCs) are widely used drugs in the treatment of lymphoid malignancies; resistance of GCs in lymphocytes confers poor prognosis and the mechanisms are poorly understood. Here, we found T-acute lymphoblastic leukemia (T-ALL) cells acquire resistance to dexamethasone (DEX)-mediated killing through abnormal activation of Akt, resulting in inhibition of the FoxO3a/Bim pathway. The resistant state was reported to be associated with increased glycolysis, NOTCH1 activating mutations and activated PI3K/ serum GS regulated kinases (SGK) pathway. Use of aforementioned pathway inhibitors blocked FoxO3a-phosphorylation and partially improved DEX-mediated killing of GC-resistant T-ALL cells, further revealing the essential role of the FoxO3a/Bim pathway in the development of GC resistance. Inhibition of Akt is most effective at restoring sensitivity to DEX of GC-resistant lymphocytes in vitro and in vivo, but shows significant hepatotoxicity in vivo. A significantly elevated expression of Akt2 not Akt1 in intrinsically, secondarily GC-resistant lymphocytes and relapsed/refractory ALL patients implicates a more specific target for GC resistance. Mechanistically, Akt2 has a stronger binding capacity with FoxO3a compared to Akt1, and acts as a direct and major negative regulator of FoxO3a activity driving GC resistance. Pharmacologic inhibition of Akt2 more effectively restores sensitivity to GCs than inhibition of Akt1 in vitro, shows higher synergistic effect acting with DEX, and reverses GC resistance in GC-resistant T- or B- lymphoid tumors in vivo with reduced liver toxicity. In summary, these results suggest that Akt2 might serve as a more direct and specific kinase mediating GC resistance through FoxO3a/Bim signaling pathway, and Akt2 inhibition may be explored as a promising target for treating GC-resistant hematopoietic malignancies.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box O3/metabolismo , Glucocorticoides/farmacologia , Leucemia de Células T/diagnóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dexametasona/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Glucocorticoides/uso terapêutico , Humanos , Leucemia de Células T/tratamento farmacológico , Leucemia de Células T/mortalidade , Leucemia de Células T/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Nus , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Taxa de Sobrevida
4.
Acta Biochim Biophys Sin (Shanghai) ; 49(7): 635-642, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28510621

RESUMO

Mouse miR-290 cluster miRNAs are expressed specifically in early embryos and embryonic germ cells. These miRNAs play critical roles in the maintenance of pluripotency and self-renewal. Here, we showed that Cyclin D1 is a direct target gene of miR-290 cluster miRNAs. Negative relationships between the expression of Cyclin D1 protein and miR-290 cluster miRNAs in pluripotent and non-pluripotent cells, as well as in differentiating CGR8 cells were observed. Inhibition of miR-290 cluster miRNAs could arrest cells at the G1 phase and slow down the cell proliferation in CGR8 mouse stem cells. Since miR-290 cluster miRNAs are the most dominant stem-cell-specific miRNAs, our results revealed an important cause for the absence of Cyclin D1 in mouse embryonic stem cells.


Assuntos
Ciclina D1/análise , MicroRNAs/fisiologia , Células-Tronco Embrionárias Murinas/química , Animais , Proliferação de Células , Células Cultivadas , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/fisiologia , Quinase 6 Dependente de Ciclina/fisiologia , Fase G1 , Camundongos , Células-Tronco Embrionárias Murinas/citologia
5.
Oncotarget ; 7(37): 59287-59298, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27494902

RESUMO

Previous studies have indicated that miR-146a-5p acts as an oncogene in several types of cancer, yet a tumor suppressor gene in others. In non-small cell lung cancer (NSCLC), one report showed that it was downregulated and played the role of tumor suppressor. However, another study showed that miR-146a-5p was overexpressed in the serum of NSCLC patients compared to healthy controls. Therefore, it is obvious that further study of the function of miR-146a-5p in NSCLC is necessary to fully understand its importance. Herein, we have verified that miR- 146a- 5p acts as a tumor suppressor in NSCLC. Our data revealed that the expression level of miR-146a-5p was significantly decreased in several human NSCLC cell lines, and also less abundant in human NSCLC tissues, when compared with controls. Moreover, we observed that miR-146a-5p could suppress cell proliferation, both in vitro and in vivo. Our results also showed that miR-146a-5p directly targeted the 3'-UTR of CCND1 and CCND2 mRNAs as well as decreased their expression at both mRNA and protein levels, causing cell cycle arrest at the G0/G1 phase. Furthermore, siRNA-mediated downregulation of CCND1 or CCND2 yielded the same effects on proliferation and cell cycle arrest as miR-146a-5p upregulation did in the NSCLC cell lines. We confirmed that the expression of miR-146a-5p had negative relationship with CCND1 or CCND2. Besides, we also found that miR-146a-5p could inhibit tumor growth in xengroft mouse models, and CCND1 and CCND2 were downregulated in miR-146a-5p overexpressed xengroft tumor tissues. In summary, our results demonstrated that miR-146a-5p could suppress the proliferation and cell cycle progression in NSCLC cells by inhibiting the expression of CCND1 and CCND2.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Neoplasias Pulmonares/terapia , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D2/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncotarget ; 7(23): 34011-21, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27049724

RESUMO

MicroRNAs are a class of non-coding single-stranded RNA, 20-23 nucleotide in length, which can be involved in the regulation of gene expression. Through binding with 3'-untranslated regions (3'-UTR), microRNAs can cause degradation of target mRNAs or inhibition of translation, and thus regulating the expression of genes at the post-transcriptional level. In this study, we found that miR-486-5p was significantly downregulated in non-small cell lung cancer (NSCLC) tissues and cell lines, suggesting that miR-486-5p might function as a tumor suppressor in lung cancer. Additionally, we showed that CDK4, an oncogene that plays an important role in cell cycle G1/S phase progression, was directly targeted by miR-486-5p. Furthermore, our data reveals that knockdown of CDK4 by siRNA can inhibit cell proliferation, promote apoptosis, and impede cell-cycle progression. In epigenetics, the upstream promoter of miR-486-5p was strongly regulated by methylation in NSCLC. Collectively, our results suggest that miR-486-5p could not only inhibit NSCLC by downregulating the expression of CDK4, but also be as a promising and potent therapy in the near future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Quinase 4 Dependente de Ciclina/metabolismo , Neoplasias Pulmonares/enzimologia , MicroRNAs/metabolismo , Células A549 , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Metilação de DNA , Regulação para Baixo , Epigênese Genética , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Regiões Promotoras Genéticas , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
10.
PLoS Pathog ; 12(2): e1005423, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26871705

RESUMO

Schistosomes, blood flukes, are an important global public health concern. Paired adult female schistosomes produce large numbers of eggs that are primarily responsible for the disease pathology and critical for dissemination. Consequently, understanding schistosome sexual maturation and egg production may open novel perspectives for intervening with these processes to prevent clinical symptoms and to interrupt the life-cycle of these blood-flukes. microRNAs (miRNAs) are key regulators of many biological processes including development, cell proliferation, metabolism, and signal transduction. Here, we report on the identification of Schistosoma japonicum miRNAs using small RNA deep sequencing in the key stages of male-female pairing, gametogenesis, and egg production. We identified 38 miRNAs, including 10 previously unknown miRNAs. Eighteen of the miRNAs were differentially expressed between male and female schistosomes and during different stages of sexual maturation. We identified 30 potential target genes for 16 of the S. japonicum miRNAs using antibody-based pull-down assays and bioinformatic analyses. We further validated some of these target genes using either in vitro luciferase assays or in vivo miRNA suppression experiments. Notably, suppression of the female enriched miRNAs bantam and miR-31 led to morphological alteration of ovaries in female schistosomes. These findings uncover key roles for specific miRNAs in schistosome sexual maturation and egg production.


Assuntos
MicroRNAs/genética , Ovário/crescimento & desenvolvimento , Ovário/patologia , Schistosoma japonicum/genética , Esquistossomose/genética , Animais , Sequência de Bases , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , Camundongos Endogâmicos BALB C , Coelhos , Análise de Sequência de RNA/métodos , Diferenciação Sexual
11.
Acta Biochim Biophys Sin (Shanghai) ; 47(8): 630-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26124189

RESUMO

MicroRNAs play important roles in carcinogenesis and tumor progress. Lung cancer is the leading cause of cancer mortality worldwide. In this study, the function of miR-181a-5p was investigated in non-small-cell lung cancer (NSCLC). Results showed that miR-181a-5p was significantly decreased in NSCLC tissues and cell lines. The proliferation and migration of A549 cells transfected with miR-181a-5p mimic was significantly inhibited. Luciferase activity assay results demonstrated that two binding sites of Kras could be directly targeted by miR-181a-5p. Furthermore, Kras was down-regulated by miR-181a-5p at both transcriptional and translational levels. SiRNA-mediated Kras down-regulation could mimic the effects of miR-181a-5p mimic in A549 cells. Our findings suggest that miR-181a-5p plays a potential role in tumor suppression by partially targeting Kras and has the potential therapeutic application in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Terapia de Alvo Molecular , Transfecção
12.
Oncotarget ; 6(24): 20111-20, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26036635

RESUMO

Tanshinone is the liposoluble constituent of Salia miltiorrhiza, a root used in traditional herbal medicine which is known to possess certain health benefits. Although it is known that tanshinones, including tanshinone I (T1), tanshinone IIA (T2A), and cryptotanshinone (CT), can inhibit the growth of lung cancer cells in vitro, the mechanism under which they act is still unclear. AURKA, an oncogene, encodes a serine-threonine kinase which regulates mitotic processes in mammalian cells. Here, we reported that tanshinones mediate AURKA suppression partly through up-regulating the expression of miR-32. We found that tanshinones could inhibit cell proliferation, promote apoptosis, and impede cell-cycle progression, thus performing an antineoplastic function in non-small cell lung cancer (NSCLC). Additionally, we demonstrated that tanshinones attained these effects in part by down-regulating AURKA, corroborating previous reports. Our results showed that in NSCLC, similar effects were obtained with knock-down of the AURKA gene by siRNA. We also verified that AURKA was the direct target of miR-32. Collectively, our results demonstrated that tanshinones could inhibit NSCLC by suppressing AURKA via up-regulating the expressions of miR-32 and other related miRNAs.


Assuntos
Abietanos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/biossíntese , MicroRNAs/genética , Regulação para Cima/efeitos dos fármacos
14.
Acta Biochim Biophys Sin (Shanghai) ; 47(3): 224-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25662391

RESUMO

MicroRNAs (miRNAs) are a class of non-coding, regulatory small RNAs of ∼22 nt. It was implicated that these small RNAs play critical roles in various important biological processes. During development, some miRNAs are specifically expressed in individual tissues and at particular developmental stages. Many miRNAs show distinct expression patterns in the development of central nervous system, including spinal cord. In this study, we first reported the miRNAs expression in the development of mouse spinal cord. Differentially expressed miRNAs in embryonic (day 13.5) and neonatal mice spinal cords were identified. The predicted target genes of the differentially expressed miRNAs were subject to gene ontology and KEGG pathway analysis, and several nervous development-related pathways were enriched, implying that these miRNAs may be involved in these pathways that regulate mouse spinal cord development.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo , Animais , Animais Recém-Nascidos , Regulação para Baixo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
15.
Mol Med Rep ; 11(1): 571-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25322940

RESUMO

microRNAs (miRNAs) are small, non­coding RNAs involved in multiple biological pathways by regulating post-transcriptional gene expression. Previously, autophagy has been reported to suppress the progression of non-small cell lung cancer (NSCLC). However, how miRNAs regulate autophagy in NSCLC remains to be elucidated. In the present study, the autophagy gene, autophagy-related 2B (ATG2B), was identified as a novel target of miR-143. The overexpression of miR-143 was able to downregulate the expression of atg2b at the transcriptional and translational levels by direct binding to its 3' untranslated region. Cell proliferation was significantly inhibited by the ectopic expression of miR-143 in H1299 cells. Knockdown of ATG2B resulted in a similar phenotype, with the overexpression of miR-143 in NSCLC cells. Furthermore, knockdown of ATG2B and hexokinase 2, a key enzyme in glycolysis and another target of miR-143, co-ordinated to inhibit the proliferation of H1299 cells. The results of the present study demonstrated that miR-143 was a novel and important regulator of autophagy by targeting ATG2B and repression of gene expression in autophagy and high glycolysis had a coordinate effect in H1299 cells. These results suggested that ATG2B may be a new potential therapeutic target for NSCLC. Furthermore, it was implied that interrupting autophagy and glycolysis improves NSCLC therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Proteínas de Transporte Vesicular/genética , Autofagia/genética , Proteínas Relacionadas à Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Hexoquinase/genética , Humanos
16.
Tumour Biol ; 36(4): 2481-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25501507

RESUMO

MicroRNAs (MiRNAs) are small non-coding RNA molecules which act as important regulators of post-transcriptional gene expression by binding 3'-untranslated region (3'-UTR) of target messenger RNA (mRNA). In this study, we analyzed miRNA-34a (miR-34a) as a tumor suppressor in non-small cell lung cancer (NSCLC) H1299 cell line. The expression level of miR-34a in four different NSCLC cell lines, H1299, A549, SPCA-1, and HCC827, was significantly lower than that in the non-tumorigenic bronchial epithelium cell line BEAS-2B. In human NSCLC tissues, miR-34a expression level was also significantly decreased in pT2-4 compared with the pT1 group. Moreover, miR-34a mimic could inhibit the proliferation and triggered apoptosis in H1299 cells. Luciferase assays revealed that miR-34a inhibited TGFßR2 expression by targeting one binding site in the 3'-UTR of TGFßR2 mRNA. Quantitative real-time PCR (qRT-PCR) and Western blot assays verified that miR-34a reduced TGFßR2 expression at both mRNA and protein levels. Furthermore, downregulation of TGFßR2 by siRNA showed the same effects on the proliferation and apoptosis as miR-34a mimic in H1299 cells. Our results demonstrated that miR-34a could inhibit the proliferation and promote the apoptosis of H1299 cells partially through the downregulation of its target gene TGFßR2.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Regiões 3' não Traduzidas/genética , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/biossíntese , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética
17.
BMC Genomics ; 15: 488, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24942538

RESUMO

BACKGROUND: Reprogrammed cells, including induced pluripotent stem cells (iPSCs) and nuclear transfer embryonic stem cells (NT-ESCs), are similar in many respects to natural embryonic stem cells (ESCs). However, previous studies have demonstrated that iPSCs retain a gene expression signature that is unique from that of ESCs, including differences in microRNA (miRNA) expression, while NT-ESCs are more faithfully reprogrammed cells and have better developmental potential compared with iPSCs. RESULTS: We focused on miRNA expression and explored the difference between ESCs and reprogrammed cells, especially ESCs and NT-ESCs. We also compared the distinct expression patterns among iPSCs, NT-ESCs and NT-iPSCs. The results demonstrated that reprogrammed cells (iPSCs and NT-ESCs) have unique miRNA expression patterns compared with ESCs. The comparison of differently reprogrammed cells (NT-ESCs, NT-iPSCs and iPSCs) suggests that several miRNAs have key roles in the distinct developmental potential of reprogrammed cells. CONCLUSIONS: Our data suggest that miRNAs play a part in the difference between ESCs and reprogrammed cells, as well as between MEFs and pluripotent cells. The variation of miRNA expression in reprogrammed cells derived using different reprogramming strategies suggests different characteristics induced by nuclear transfer and iPSC generation, as well as different developmental potential among NT-ESCs, iPSCs and NT-iPSCs.


Assuntos
Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , MicroRNAs/genética , Transcriptoma , Animais , Linhagem Celular , Reprogramação Celular , Mapeamento Cromossômico , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo
18.
Parasitology ; 140(14): 1751-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23942009

RESUMO

Circulating microRNAs (miRNAs) have received considerable attention as a novel class of biomarkers for the diagnosis of cancer and as signalling molecules in mediating intercellular communication. Schistosomes, the causative agents of schistosomiasis, live in the blood vessels of a mammalian host in the adult stage. In the present study, we characterized schistosome-specific small RNA populations in the plasma of rabbits infected with Schistosoma japonicum (S. japonicum) using a deep sequencing method and then identified five schistosome-specific miRNAs, including four known miRNAs (Bantam, miR-3479, miR-10 and miR-3096), and one novel miRNA (miR-0001, miRBase ID: sja-miR-8185). Four of the five schistosome-specific miRNAs were also detected by real-time RT-PCR in the plasma of S. japonicum-infected mice. In addition, our study indicated that schistosome Argonaute 2/3 may be an excretory-secretory (ES) protein. In summary, our findings are expected to provide useful information for further development of novel biomarkers for the diagnosis of schistosomiasis and also for deeper understanding of the mechanism of host-parasite interaction.


Assuntos
MicroRNAs/genética , Schistosoma japonicum/genética , Esquistossomose Japônica/parasitologia , Animais , Biomarcadores , Biologia Computacional , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/sangue , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquistossomose Japônica/sangue , Esquistossomose Japônica/diagnóstico
19.
Oncol Rep ; 30(1): 492-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23670238

RESUMO

microRNAs (miRNAs) are a class of non-coding small RNAs that act as negative regulators of gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNAs. Tumor protein p53, a transcriptional factor, plays an important role in the progression of tumorigenesis. miR-150 was the only miRNA predicted to target 3'-UTR of p53 by Targetscan. In order to investigate the function of miR-150, p53 and relevant miRNAs in non-small cell lung cancer (NSCLC), we constructed two expression vectors of p53 (pcDNA3.1-p53 and pcDNA3.1-p53-3'-UTR) and two report vectors (pGL3-p53-3'-UTR and pGL3-p53-3'-mUTR). The activity of luciferase transfected with miR-150 mimics was lower by 30% when compared to that of the miRNA-negative control (miRNA-NC). Moreover, the p53 protein was downregulated by at least 50% when miR-150 mimics were cotransfected with pcDNA3.1-p53-3'-UTR when compared to miRNA-NC. We also determined the expression of miR-150 and p53 in NSCLC patient tissue samples. The expression of miR-150 in T2 stage tissue samples was higher than that in T1 stage tissue samples. The corresponding target gene p53 was correlated with miR-150 expression. In the present study, we further analyzed the cell cycle distribution. The cells transfected with pcDNA3.1-p53 were significantly arrested in the G1 phase when compared to the control cells. When miR-150 mimics were cotransfected with pcDNA3.1-p53-3'-UTR, the percentage of cells in the G1 phase was significantly lower by 4% when compared to miRNA-NC. To identify miRNAs that are regulated by the p53 protein, qRT-PCR was performed after pcDNA3.1-p53 transfection. miR-34a, miR-184, miR-181a and miR-148 were upregulated significantly. However, there was no distinct difference in the expression of miR-10a, miR-182 and miR-34c. Our results showed that miR-150 targets the 3'-UTR of p53, and p53 protein promotes the expression of miRNAs which affect cell cycle progression. These findings suggest that miR-150, p53 protein and relevant miRNAs are members of a regulatory network in NSCLC tumorigenesis.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regiões 3' não Traduzidas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/biossíntese , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Supressora de Tumor p53/genética
20.
Methods Mol Biol ; 936: 105-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23007503

RESUMO

The Mouse P19 cell line was derived from an embryonal carcinoma. The pluripotent P19 cells can be induced to differentiate into neuronal and glial cells. Here, we describe an miRNA microarray method to monitor the miRNA expression profiles during the course of P19 cells neuronal differentiation. The results indicated that there were significant differences between the miRNA expression in P19 EC cells and the resultant differentiated neural stem cells.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Carcinoma Embrionário , Diferenciação Celular , Linhagem Celular Tumoral , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Camundongos , MicroRNAs/genética , RNA/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...