Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5063, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871708

RESUMO

Levitated diamond particles in high vacuum with internal spin qubits have been proposed for exploring macroscopic quantum mechanics, quantum gravity, and precision measurements. The coupling between spins and particle rotation can be utilized to study quantum geometric phase, create gyroscopes and rotational matter-wave interferometers. However, previous efforts in levitated diamonds struggled with vacuum level or spin state readouts. To address these gaps, we fabricate an integrated surface ion trap with multiple stabilization electrodes. This facilitates on-chip levitation and, for the first time, optically detected magnetic resonance measurements of a nanodiamond levitated in high vacuum. The internal temperature of our levitated nanodiamond remains moderate at pressures below 10-5 Torr. We have driven a nanodiamond to rotate up to 20 MHz (1.2 × 109 rpm), surpassing typical nitrogen-vacancy (NV) center electron spin dephasing rates. Using these NV spins, we observe the effect of the Berry phase arising from particle rotation. In addition, we demonstrate quantum control of spins in a rotating nanodiamond. These results mark an important development in interfacing mechanical rotation with spin qubits, expanding our capacity to study quantum phenomena.

2.
Nano Lett ; 23(22): 10157-10163, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37909774

RESUMO

A levitated nonspherical nanoparticle in a vacuum is ideal for studying quantum rotations and is an ultrasensitive torque detector for probing fundamental particle-surface interactions. Here, we optically levitate a silica nanodumbbell in a vacuum at 430 nm away from a sapphire surface and drive it to rotate at GHz frequencies. The relative linear speed between the tip of the nanodumbbell and the surface reaches 1.4 km s-1 at a submicrometer separation. The rotating nanodumbbell near the surface demonstrates a torque sensitivity of (5.0 ± 1.1) × 10-26 N m Hz-1/2 at room temperature. Moreover, we probed the near-field laser intensity distribution beyond the optical diffraction limit with a nanodumbbell levitated near a nanograting. Our numerical simulations show that the system can measure the Casimir torque and will improve the detection limit of non-Newtonian gravity by several orders of magnitude.

3.
Opt Express ; 30(11): 20026-20037, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221763

RESUMO

We experimentally study the interference of dipole scattered light from two optically levitated nanoparticles in vacuum, which present an environment free of particle-substrate interactions. We illuminate the two trapped nanoparticles with a linearly polarized probe beam orthogonal to the propagation of the trapping laser beams. The scattered light from the nanoparticles are collected by a high numerical aperture (NA) objective lens and imaged. The interference fringes from the scattered vector light for the different dipole orientations in image and Fourier space are observed. Especially, the interference fringes of two scattered light fields with polarization vortex show the π shift of the interference fringes between inside and outside the center region of the two nanoparticles in the image space. As far as we know, this is the first experimental observation of the interference of scattered vector light fields from two dipoles in free space. This work also provides a simple and direct method to determine the spatial scales between optically levitated nanoparticles by the interference fringes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...