Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 7(12): 1602-1613, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37500748

RESUMO

The efficiency of DNA-enrichment techniques is often insufficient to detect mutations that occur at low frequencies. Here we report a DNA-excision method for the detection of low-frequency mutations in genomic DNA and in circulating cell-free DNA at single-nucleotide resolution. The method is based on a competitive DNA-binding-and-digestion mechanism, effected by deoxyribonuclease I (DNase) guided by single-stranded phosphorothioated DNA (sgDNase), for the removal of wild-type DNA strands. The sgDNase can be designed against any wild-type DNA sequences, allowing for the uniform enrichment of all the mutations within the target-binding region of single-stranded phosphorothioated DNA at mild-temperature conditions. Pretreatment with sgDNase enriches all mutant strands with initial frequencies down to 0.01% and leads to high discrimination factors for all types of single-nucleotide mismatch in multiple sequence contexts, as we show for the identification of low-abundance mutations in samples of blood or tissue from patients with cancer. The method can be coupled with next-generation sequencing, droplet digital polymerase chain reaction, Sanger sequencing, fluorescent-probe-based assays and other mutation-detection methods.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Reação em Cadeia da Polimerase/métodos , DNA/genética , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...