Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36355159

RESUMO

Salt-induced renal metabolism dysfunction is an important mechanism of salt-sensitive hypertension. Given that the gut-liver axis is the first hit of a high-salt diet (HSD), we aimed to identify the extra-renal mechanism from hepatic metabolism and gut microbiota, and attempted to relieve the salt-induced metabolic dysfunctions by curcumin. Untargeted metabolomics analysis was performed to identify the changes in hepatic metabolic pathways, and integrated analysis was employed to reveal the relationship between hepatic metabolic dysfunction and gut microbial composition. HSD induced significant increase in fumaric acid, l-lactic acid, creatinine, l-alanine, glycine, and l-cysteine levels, and amino acids metabolism pathways associated with glycolysis were significantly altered, including alanine, aspartate, and glutamate metabolism; glycine, serine, and threonine metabolism, which were involved in the regulation of blood pressure. Integrated multi-omics analysis revealed that changes in Paraprevotella, Erysipelotrichaceae, and genera from Clostridiales are associated with metabolic disorders. Gene functional predication analysis based on 16S Ribosomal RNA sequences showed that the dysfunction in hepatic metabolism were correlated with enhanced lipopolysaccharide (LPS) biosynthesis and apoptosis in gut microbes. Curcumin (50 mg/kg/d) might reduce gut microbes-associated LPS biosynthesis and apoptosis, partially reverse metabolic dysfunction, ameliorate renal oxidative stress, and protect against salt-sensitive hypertension.

2.
J Food Biochem ; 46(12): e14497, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36314446

RESUMO

Salt-induced hypertension is one of the major issues worldwide and one of the main factors involved in heart and kidney failure. The objective of this study was to investigate the potential role of Benincasa hispida extracts on high salt-induced hypertension in Dahl-salt sensitive (D-SS) rats and to find out the metabolic and biochemical pattern involved in the reduction of hypertension. Twenty-six Dahl salt-sensitive (D-SS) rats were selected and divided into four groups. The metabolic strategy was applied to test the extracts on salt-sensitive hypertension in kidney. Gas Chromatography-Mass spectrometry (GC-MS) was used to identify the potent biochemical profile in renal medulla and cortex of rat kidneys. The differential metabolites of cortex and medulla, enrichment analysis and pathway analysis were performed using metabolomics data. The GC-MS data revealed that 24 different antihypertensive metabolites was detected in renal cortex, while 16 were detected in renal medulla between different groups. The significantly metabolic pathways namely citrate cycle, glutathione metabolism, glycine, serine, and threonine metabolism, glyoxylate and dicarboxylate metabolism, glycerolipid metabolism, alanine, aspartate and glutamate metabolism in renal cortex and glycerolipid metabolism, pentose phosphate pathway, citrate cycle, glycolysis, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis in renal medulla were involved in the process of Hypertension. The results suggest that the extract mainly alter the metabolic pathways of amino acid in Dahl salt-sensitive rats and its antioxidant potential reduced the hypertension patterns of Salt-sensitive rat. The antihypertensive components malic acid, aspartic acid, and glycine of extract can be used as therapeutic drugs to protect kidneys from salt-induced hypertension. PRACTICAL APPLICATIONS: Hypertension is a multifactorial disease and one of the risk factors for heart and kidney failure. Benincasa hispida is a widely used vegetable in China, which belongs to the Cucurbitaceae family. Benincasa hispida (wax gourd) has been used in traditional Chinese medicine for the treatment of inflammation and hypertension. The Benincasa hispida contains many compounds such as amino acids, carbohydrates, volatile compounds, vitamins, and minerals. The amino acid present in the pulp of Benincasa hispida are ornithine, threonine, aspartate, glutamate, serine, glycine, proline, alanine, valine, cysteine, isoleucine, tyrosine, leucine, lysine, phenylalanine, histidine, arginine, and γ-aminobutyric acid. Our results showed that Benincasa hispida is one of the potent natural antioxidants and can maintain normal blood pressure in Dahl salt-sensitive rats (D-SS). In conclusion, the current results provide good theoretical basis for the development and research using Benincasa hispida as an effective natural antioxidant for hypertension.


Assuntos
Cucurbitaceae , Hipertensão , Insuficiência Renal , Ratos , Animais , Ratos Endogâmicos Dahl , Anti-Hipertensivos , Antioxidantes , Ácido Aspártico , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Cloreto de Sódio , Aminoácidos , Fenilalanina , Alanina , Glicina , Tirosina , Cucurbitaceae/metabolismo , Serina , Treonina , Extratos Vegetais/farmacologia
3.
Amino Acids ; 54(2): 169-180, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34837556

RESUMO

The human Dietary Approaches to Stop Hypertension-Sodium Trial has shown that ß-aminoisobutyric acid (BAIBA) may prevent the development of salt-sensitive hypertension (SSHT). However, the specific antihypertensive mechanism remains unclear in the renal tissues of salt-sensitive (SS) rats. In this study, BAIBA (100 mg/kg/day) significantly attenuated SSHT via increased nitric oxide (NO) content in the renal medulla, and it induced a significant increase in NO synthesis substrates (L-arginine and malic acid) in the renal medulla. BAIBA enhanced the activity levels of total NO synthase (NOS), inducible NOS, and constitutive NOS. BAIBA resulted in increased fumarase activity and decreased fumaric acid content in the renal medulla. The high-salt diet (HSD) decreased fumarase expression in the renal cortex, and BAIBA increased fumarase expression in the renal medulla and renal cortex. Furthermore, in the renal medulla, BAIBA increased the levels of ATP, ADP, AMP, and ADP/ATP ratio, thus further activating AMPK phosphorylation. BAIBA prevented the decrease in renal medullary antioxidative defenses induced by the HSD. In conclusion, BAIBA's antihypertensive effect was underlined by the phosphorylation of AMPK, the prevention of fumarase's activity reduction caused by the HSD, and the enhancement of NO content, which in concert attenuated SSHT in SS rats.


Assuntos
Fumarato Hidratase , Hipertensão , Ácidos Aminoisobutíricos , Animais , Pressão Sanguínea , Suplementos Nutricionais , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/prevenção & controle , Ratos , Ratos Endogâmicos Dahl
4.
Biochem Biophys Res Commun ; 553: 1-8, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33752091

RESUMO

BACKGROUND AND AIMS: Hypercholesterolemia is characterized by the elevation of plasma total cholesterol level, especially low-density lipoprotein (LDL) cholesterol. This disease is usually caused by a mutation in genes such as LDL receptor, apolipoprotein B, or proprotein convertase subtilisin/kexin type 9. However, a considerable number of patients with hypercholesterolemia do not have any mutation in these candidate genes. In this study, we examined the difference in the metabolic level between patients with hypercholesterolemia and healthy subjects, and screened the potential biomarkers for this disease. METHODS: Analysis of plasma metabolomics in hypercholesterolemia patients and healthy controls was performed by gas chromatography-mass spectrometry and metabolic correlation networks were constructed using Gephi-0.9.2. RESULTS: First, metabolic profile analysis confirmed the distinct metabolic footprints between the patients and the healthy ones. The potential biomarkers screened by orthogonal partial least-squares discrimination analysis included l-lactic acid, cholesterol, phosphoric acid, d-glucose, urea, and d-allose (Variable importance in the projection > 1). Second, arginine and methionine metabolism were significantly perturbed in hypercholesterolemia patients. Finally, we identified that l-lactic acid, l-lysine, l-glutamine, and l-cysteine had high scores of centrality parameters in the metabolic correlation network. CONCLUSION: Plasma l-lactic acid could be used as a sensitive biomarker for hypercholesterolemia. In addition, arginine biosynthesis and cysteine and methionine metabolism were profoundly altered in patients with hypercholesterolemia.


Assuntos
Biomarcadores/sangue , Biomarcadores/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Metabolômica , Adolescente , Adulto , Arginina/metabolismo , Estudos de Casos e Controles , Colesterol/metabolismo , Cisteína/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Lisina/metabolismo , Masculino , Metionina/metabolismo , Pessoa de Meia-Idade , Ácidos Fosfóricos/metabolismo , Ureia/metabolismo , Adulto Jovem
5.
Life Sci ; 270: 119134, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513395

RESUMO

AIMS: Salt-sensitive hypertension is a risk factor for cardiovascular disease. Previous studies have shown that insufficient arginine in the kidney caused by metabolic imbalance is an important factor in salt-sensitive hypertension. Whether the high nitrogen content of histidine can affect the balance of nitrogen metabolism in Dahl salt-sensitive (SS) rats. This article aimed to study the effects of oral histidine on salt-sensitive hypertension, kidney damage and metabolic patterns of high-salt diet in SS rats. MAIN METHODS: Adult rats were divided into four groups, and blood pressure was measured using a non-invasive tail-cuff system. Gas chromatography-mass spectrometry analyzed metabolites in serum and kidney tissues. KEY FINDINGS: High-salt diet significantly increased the blood pressure of rats and aggravated kidney damage. Of note, histidine can attenuate salt-sensitive hypertension and kidney damage by improving metabolic pattern, reducing Reactive Oxygen Species (ROS) and increasing nitric oxide levels in SS rats. SIGNIFICANCE: These results suggest that histidine could be a potential adjuvant to prevent and control salt-sensitive hypertension.


Assuntos
Histidina/farmacologia , Hipertensão/tratamento farmacológico , Administração Oral , Animais , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/metabolismo , Dieta , Histidina/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Nefropatias/metabolismo , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Endogâmicos Dahl , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos
6.
Biochimie ; 181: 154-161, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33347925

RESUMO

High salt diet (HSD, 8% NaCl) contributes to salt-sensitive hypertension, this study aimed to determine the effect of HSD on salt-sensitive hypertension by combining proteomic with metabolomics methods. Salt-sensitive rats were fed on HSD and normal salt diet (NSD, 0.4% NaCl) for two weeks before further analysis. Proteomic analysis showed the differential expression proteins (DEPs) were primarily mapped in the tricarboxylic acid (TCA)-cycle, glycolysis/gluconeogenesis, and other pathways associated with multiple amino acids. HSD decreased the medullary activities and protein expression level of two key enzymes of TCA-cycle, MDH and NADP+-IDH. Metabolomics showed three serous TCA-cycle-associated compounds, including decreased malic acid, decreased citric acid, and increased fumaric acid were differentially detected, which resulted in a decrease in NO content and an increase in H2O2 content in serum. The content of GSH, GSH/GSSG ratio, and synthesis substrates of GSH-cysteine and glycine, were significantly decreased by HSD, thus attenuated the antioxidant system in the renal medulla. HSD enhanced the medullary pentose phosphate pathway, which finally increased the concentration of NADPH and NADP+, NADPH/NADP+, and the activity of NADPH oxidase in the renal medulla. Additionally, HSD enhanced the glycolysis pathway in the renal medulla. In summary, HSD significantly weakened the TCA cycle, and attenuated the antioxidant system in the renal medulla, which finally contributed to salt-sensitive hypertension.


Assuntos
Antioxidantes/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Hipertensão , Medula Renal/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Medula Renal/patologia , Masculino , Via de Pentose Fosfato/efeitos dos fármacos , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/farmacologia
7.
Biochem Biophys Res Commun ; 533(1): 188-194, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32958245

RESUMO

AIMS: Dahl salt-sensitive (SS) rats develop similar prediabetes lesion characteristics, such as impaired glucose tolerance (IGT), when compared with the salt resistant rat. In this study, we evaluate the risk of high glucose intake during prediabetes and reveal the metabolic pathways relevant to the pathophysiology of prediabetes to diabetes using the SS rat model and compared this with the salt-resistant consomic SS.13BN rat model. METHODS: SS rats were fed with normal chow ±10% glucose solution ad libitum for five weeks. The same experimental treatment was performed on the SS.13BN rats. Metabolites derived from the serum and liver tissue were measured through biochemical and metabolomics analyses. Multivariate, pathway enrichment, and metabolic correlation network analyses were performed based on the metabolomics data. RESULTS: Biochemical analysis revealed that serum triglyceride (TG) significantly increased with a significant decrease in serum total cholesterol (TC) after high glucose intake in the SS rat. Metabolic pathway analysis revealed that high glucose intake interfered with galactose, glyoxylate, and dicarboxylate metabolism, most evidently in the SS rat. Hepatic l-lactic acid content increased in the SS rat after high glucose intake, whereas the opposite was observed in SS.13BN rats. Metabolic correlation network analysis based on serum metabolites revealed that urea and l-valine had higher metabolic centrality in the SS rat. CONCLUSION: Our findings revealed that high glucose intake can significantly stimulate hypertriglyceridemia and reduce serum TC level. The profoundly altered metabolic pathway included galactose, glyoxylate, and dicarboxylate metabolism. l-lactic acid was screened as a biomarker in liver, whereas l-valine and urea were screened as hub metabolites in serum.


Assuntos
Redes e Vias Metabólicas , Metaboloma , Estado Pré-Diabético/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Fígado/metabolismo , Masculino , Metabolômica , Estado Pré-Diabético/sangue , Ratos , Ratos Endogâmicos Dahl , Triglicerídeos/sangue , Triglicerídeos/metabolismo
8.
Virol J ; 9: 152, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22871036

RESUMO

BACKGROUND: Porcine circovirus type 2 (PCV2) is associated with post-weaning multi-systemic wasting syndrome (PMWS) in young weaned pigs. Immune stimulation was found to activate the replication of PCV2 and exacerbate the clinical outcome of the infection. Proper amount of interferon-α (IFN-α) is able to enhance PCV2 infection and production in Porcine kidney-15 (PK-15) cells when administered after inoculation. METHODS: In the present study, luciferase reporter assays, construction of mutant viruses, Analysis the replication efficiency and the response to IFN-α treatment in PK-15 cells and animal experiments were carried out to analyze the function of interferon-stimulated response element (ISRE) of PCV2 and its role during viral replication in vitro and in vivo. RESULTS: A functional viral ISRE sequence, 5'-CTGAAAACGAAAGA-3', was identified in Rep gene promoter (Prep) of PCV2. PCV2 Prep is composed of two mini promoters, the proximal one span the sequence +1 to -106, containing an ISRE while the distal mini promoter is composed of three tandem GC box like sites locate at -85 to -194. It was demonstrated that viral ISRE is necessary for porcine IFN-α initiated luciferase expression enhancement and it plays an important role in affecting the replication efficiency of PCV2 in vivo and in vitro. CONCLUSIONS: These findings provide a theoretical basis for the Phenomenon of immunostimulation is able to enhance PCV2 infection, and improve the understanding of the complicated mechanisms involved in the host and pathogen interactions of PCV2.


Assuntos
Circovirus/genética , Interferons/farmacologia , Elementos de Resposta/efeitos dos fármacos , Elementos de Resposta/genética , Replicação Viral/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Sequência de Bases , Linhagem Celular , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/virologia , Circovirus/imunologia , Regulação Viral da Expressão Gênica , Genes Virais , Interferon-alfa/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Suínos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...