Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(42): 27380-27388, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36275998

RESUMO

Hydroxyl-terminated linear and star-shaped telechelic polyisobutylene have been successfully synthesized by living cationic polymerization using propylene oxide (PO)/Titanium tetrachloride (TiCl4) as the initiator system. A one-step method to prepare the terminal hydroxyl group was realized by selecting the cheap and beautiful epoxide as the functional initiator, which has the prospect of industrial application. The polymerization mechanism was proposed by the end structure analysis and Gaussian calculation results. At the same time, the living linear macromolecular chain was used as the starting point to react with divinyl compounds for synthesis of star-shaped hydroxyl-terminated polyisobutylene. The effects of initiator-crosslinking agent ratio, arm length, and reaction time on the coupling reaction were studied.

2.
Materials (Basel) ; 8(4): 1369-1383, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-28788006

RESUMO

Mesoporous polyaniline-silica nanocomposites with a full interpenetrating structure for pseudocapacitors were synthesized via the vapor phase approach. The morphology and structure of the nanocomposites were deeply investigated by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis and nitrogen adsorption-desorption tests. The results present that the mesoporous nanocomposites possess a uniform particle morphology and full interpenetrating structure, leading to a continuous conductive polyaniline network with a large specific surface area. The electrochemical performances of the nanocomposites were tested in a mixed solution of sulfuric acid and potassium iodide. With the merits of a large specific surface area and suitable pore size distribution, the nanocomposite showed a large specific capacitance (1702.68 farad (F)/g) due to its higher utilization of the active material. This amazing value is almost three-times larger than that of bulk polyaniline when the same mass of active material was used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...