Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mil Med Res ; 11(1): 7, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254241

RESUMO

Antimicrobial resistance is a global public health threat, and the World Health Organization (WHO) has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed. The discovery and introduction of novel antibiotics are time-consuming and expensive. According to WHO's report of antibacterial agents in clinical development, only 18 novel antibiotics have been approved since 2014. Therefore, novel antibiotics are critically needed. Artificial intelligence (AI) has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics. Here, we first summarized recently marketed novel antibiotics, and antibiotic candidates in clinical development. In addition, we systematically reviewed the involvement of AI in antibacterial drug development and utilization, including small molecules, antimicrobial peptides, phage therapy, essential oils, as well as resistance mechanism prediction, and antibiotic stewardship.


Assuntos
Antibacterianos , Inteligência Artificial , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Saúde Pública
2.
Front Microbiol ; 13: 818111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444617

RESUMO

Background: Ulcerative colitis (UC) is a multi-factor disease characterized by alternating remission periods and repeated occurrence. It has been shown that fecal microbiota transplantation (FMT) is an emerging and effective approach for UC treatment. Since most existing studies chose adults as donors for fecal microbiota, we conducted this study to determine the long-term efficacy and safety of the microbiota from young UC patient donors and illustrate its specific physiological effects. Methods: Thirty active UC patients were enrolled and FMT were administered with the first colonoscopy and two subsequent enema/transendoscopic enteral tubing (TET) practical regimens in The First Affiliated Hospital of Anhui Medical University in China. Disease activity and inflammatory biomarkers were assessed 6 weeks/over 1 year after treatment. The occurrence of adverse events was also recorded. The samples from blood and mucosa were collected to detect the changes of inflammatory biomarkers and cytokines. The composition of gut and oral microbiota were also sampled and sequenced to confirm the alteration of microbial composition. Results: Twenty-seven patients completed the treatment, among which 16 (59.3%) achieved efficacious clinical response and 11 (40.7%) clinical remission. Full Mayo score and calprotectin dropped significantly and remained stable over 1 year. FMT also significantly reduced the levels of C-reactive protein (CRP), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6). The gut microbiota altered significantly with increased bacterial diversity and decreased metabolic diversity in responsive patients. The pro-inflammatory enterobacteria decreased after FMT and the abundance of Collinsella increased. Accordingly, the altered metabolic functions, including antigen synthesis, amino acids metabolism, short chain fatty acid production, and vitamin K synthesis of microbiota, were also corrected by FMT. Conclusion: Fecal microbiota transplantation seems to be safe and effective for active UC patients who are nonresponsive to mesalazine or prednisone in the long-term. FMT could efficiently downregulate pro-inflammatory cytokines to ameliorate the inflammation.

3.
J Fish Dis ; 43(12): 1531-1539, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32924173

RESUMO

C-type lectins are carbohydrate-binding proteins that play important roles in immunity by serving as pattern recognition receptors. In the present study, a novel nattectin-like C-type lectin was obtained from the weather loach, Misgurnus anguillicaudatus, designated as MaCTL. MaCTL encodes a peptide with 165 amino acids, with a signal peptide and a single C-type lectin domain (CTLD), containing a galactose-specific QPD motif and a conserved Ca2+ -binding site. Transcripts of MaCTL were significantly upregulated after immune challenge with its pathogen A. hydrophila. In vitro assays with recombinant MaCTL protein revealed that it exhibited hemagglutinating and bacterial agglutinating activities, in a Ca2+ -dependent manner. MaCTL was found to bind to a wide range of bacteria, as well as bind to bacterial polysaccharides LPS and PGN. Moreover, MaCTL displayed antimicrobial activity by inhibiting the growth of bacteria. These results collectively suggest that MaCTL is involved in the antibacterial defence of weather loach.


Assuntos
Cipriniformes/imunologia , Doenças dos Peixes/imunologia , Lectinas Tipo C/imunologia , Aeromonas hydrophila/efeitos dos fármacos , Aglutinação , Sequência de Aminoácidos , Animais , Cipriniformes/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Lectinas Tipo C/química , Lectinas Tipo C/genética , Proteínas Recombinantes , Alinhamento de Sequência
4.
Fish Shellfish Immunol ; 103: 277-284, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32439510

RESUMO

Whey acidic protein domain (WAPD) occurs in a variety of proteins in animals and many of WAPD-containing proteins are involved in immunity. In the present study, a novel protein containing three WAPDs was identified from the weather loach, Misgurnus anguillicaudatus, designated as MaTWD. MaTWD share high identity with TWDs from fish but low identity with TWDs from other animal phyla. MaTWD transcripts mainly distributed in gills and head kidney responded to bacterial challenge with significant upregulation. In vitro assay with recombinant MaTWD protein revealed that MaTWD had antiprotease activity against bacterial proteases. Moreover, MaTWD exhibited bacterial binding capacity and antimicrobial activity. Most importantly, exogenous MaTWD protected loach against bacterial infection by reducing loach mortality. We infer that MaTWD participates in the antibacterial immunity of loach via its antiprotease and antimicrobial activities.


Assuntos
Cipriniformes/genética , Cipriniformes/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Perfilação da Expressão Gênica/veterinária , Bactérias Gram-Negativas/fisiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/veterinária , Filogenia , Domínios Proteicos/imunologia , Alinhamento de Sequência/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...