Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Math Methods Med ; 2022: 4996870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103069

RESUMO

OBJECTIVE: The purpose of this study was to study the effects of the GAS5/microRNA-10b (miR-10b) axis on proliferation, migration, and apoptosis of colorectal cancer (CRC). METHODS: The expression levels of GAS5 and miR-10b in CRC tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Wound healing experiment was used to detect the effects of GAS5 and miR-10b on the migration of CRC cells. The luciferase reporter gene experiment was used to verify miRNA targets. Immunohistochemical assay was used to detect the expression of proteins related to metastasis and apoptosis in tumor tissues. RESULTS: The expression of GAS5 was downregulated in CRC tissues and cell lines. The overexpression of GAS5 can inhibit cell proliferation and progression, induce apoptosis in vitro, and inhibit the growth of CRC tumor in vivo. In contrast, the expression of miR-10b, a downstream target of GAS5, was increased in CRC tissues and cells. Suppression of the miR-10b gene can inhibit proliferation and metastasis and cause apoptosis of CRC cells. In addition, luciferase reports show that GAS5 inhibits the progression of CRC cells by binding to miR-10b. Rescue experiments showed that overexpressed miR-10b could reverse GAS5-mediated antitumor effect on CRC cells in vivo and in vitro. CONCLUSIONS: LncRNA GAS5 interacts with miR-10b to inhibit cell proliferation and migration and induces apoptosis in colorectal cancer. GAS5 and miR-10b could become potential therapeutic targets for CRC.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Biologia Computacional , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo
2.
Biochem Biophys Res Commun ; 478(4): 1515-20, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27565731

RESUMO

We here tested the anti-colorectal cancer (CRC) activity by a first-in-class small molecule TRAIL inducer ONC201. The potential effect of mTOR on ONC201's actions was also examined. ONC201 induced moderate cytotoxicity against CRC cell lines (HT-29, HCT-116 and DLD-1) and primary human CRC cells. Significantly, AZD-8055, a mTOR kinase inhibitor, sensitized ONC201-induced cytotoxicity in CRC cells. Meanwhile, ONC201-induced TRAIL/death receptor-5 (DR-5) expression, caspase-8 activation and CRC cell apoptosis were also potentiated with AZD-8055 co-treatment. Reversely, TRAIL sequestering antibody RIK-2 or the caspase-8 specific inhibitor z-IETD-fmk attenuated AZD-8055 plus ONC201-induced CRC cell death. Further, mTOR kinase-dead mutation (Asp-2338-Ala) or shRNA knockdown significantly sensitized ONC201's activity in CRC cells, leading to profound cell death and apoptosis. On the other hand, expression of a constitutively-active S6K1 (T389E) attenuated ONC201-induced CRC cell apoptosis. For the mechanism study, we showed that ONC201 blocked Akt, but only slightly inhibited mTOR in CRC cells. Co-treatment with AZD-8055 also concurrently blocked mTOR activation. These results suggest that mTOR could be a primary resistance factor of ONC201 in CRC cells.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Imidazóis , Morfolinas/farmacologia , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas , Pirimidinas , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...