Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 323: 121713, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088412

RESUMO

Organ fibrosis is a pathological process of fibroblast activation and excessive deposition of extracellular matrix after persistent tissue injury and therefore is a common endpoint of many organ pathologies. Multiple cellular types and soluble mediators, including chemokines, cytokines and non-peptidic factors, are implicated in fibrogenesis and the remodeling of tissue architecture. The molecular basis of the fibrotic process is complex and consists of closely intertwined signaling networks. Research has strived for a better understanding of these pathological mechanisms to potentially reveal novel therapeutic targets for fibrotic diseases. In light of new knowledge, the receptor for advanced glycation end products (RAGE) emerged as an important candidate for the regulation of a wide variety of cellular functions related to fibrosis, including inflammation, cell proliferation, apoptosis, and angiogenesis. RAGE is a pattern recognition receptor that binds a broad range of ligands such as advanced glycation end products, high mobility group box-1, S-100 calcium-binding protein and amyloid beta protein. Although the link between RAGE and fibrosis has been established, the exact mechanisms need be investigated in further studies. The aim of this review is to collect all available information about the intricate function of RAGE and its signaling cascades in the pathogenesis of fibrotic diseases within different organs. In addition, to the major ligands and signaling pathways, we discuss potential strategies for targeting RAGE in fibrosis. We emphasize the functional links between RAGE, inflammation and fibrosis that may guide further studies and the development of improved therapeutic drugs.


Assuntos
Peptídeos beta-Amiloides , Produtos Finais de Glicação Avançada , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Inflamação/metabolismo , Fibrose
2.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806136

RESUMO

Activating transcription factor 5 (ATF5) belongs to the activating transcription factor/cyclic adenosine monophosphate (cAMP) response element-binding protein family of basic region leucine zipper transcription factors. ATF5 plays an important role in cell stress regulation and is involved in cell differentiation and survival, as well as centrosome maintenance and development. Accumulating evidence demonstrates that ATF5 plays an oncogenic role in cancer by regulating gene expressions involved in tumorigenesis and tumor survival. Recent studies have indicated that ATF5 may also modify the gene expressions involved in other diseases. This review explores in detail the regulation of ATF5 expression and signaling pathways and elucidates the role of ATF5 in cancer biology. Furthermore, an overview of putative therapeutic strategies that can be used for restoring aberrant ATF5 activity in different cancer types is provided.


Assuntos
Fatores Ativadores da Transcrição , Neoplasias , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Humanos , Neoplasias/genética
3.
Ying Yong Sheng Tai Xue Bao ; 14(10): 1723-8, 2003 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-14986374

RESUMO

The co-occurrence of soil fauna communities at different altitudes may reflect at some extent the relationships among communities, their coexistence, and the replacement of species along the altitude gradient. The continuous or disjunctive distribution of different species along altitude gradient not only reflected the environment variation at altitude gradient, but also the biological and ecological spatiality as well as the adaptability of species. The northern slope of Changbai Moutain has not only a high diversity in soil fauna types and species, but also a high variation of diversity pattern along the altitude gradient, which is a perfect transect for the research of biodiversity and gradient patterns. From 550 m to 2,560 m on the northern slope of Changbai Mountain, twenty-two plots were investigated with an interval of 100 m in altitude. By using Jaccard index, the co-occurrence of soil fauna communities at different altitudes was analyzed. For the species of different life forms or for all the species as a whole, the co-occurrence of soil faunae between neighboring communities was the highest, except for that between different soil fauna types. The peak and valley values of the co-occurrence of soil fauna communities along altitude gradient were matched with their gradient patterns, and the co-occurrence of soil faunae at different layers or all of the soil fauna communities were decreased with increasing altitude difference.


Assuntos
Altitude , Biodiversidade , Solo , Animais , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...