Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(19): 18952-18964, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37729494

RESUMO

Breast cancer (BC) remains a significant global health challenge for women despite advancements in early detection and treatment. Isoliquiritigenin (ISL), a compound derived from traditional Chinese medicine, has shown potential as an anti-BC therapy, but its low bioavailability and poor water solubility restrict its effectiveness. In this study, we created theranostic nanoparticles consisting of ISL and a near-infrared (NIR) photosensitizer, TBPI, which displays aggregation-induced emission (AIE), with the goal of providing combined chemo- and photodynamic therapies (PDT) for BC. Initially, we designed an asymmetric organic molecule, TBPI, featuring a rotorlike triphenylamine as the donor and 1-methylpyridinium iodide as the acceptor, which led to the production of reactive oxygen species in mitochondria. We then combined TBPI with ISL and encapsulated them in DSPE-PEG-RGD nanoparticles to produce IT-PEG-RGD nanoparticles, which showed high affinity for BC, better intersystem crossing (ISC) efficiency, and Förster resonance energy transfer (FRET) between TBPI and ISL. In both 4T1 BC cell line and a 4T1 tumor-bearing BC mouse model, the IT-PEG-RGD nanoparticles demonstrated excellent drug delivery, synergistic antitumor effects, enhanced tumor-killing efficacy, and reduced drug dosage and side effects. Furthermore, we exploited the optical properties of TBPI with ISL to reveal the release process and distribution of nanoparticles in cells. This study provides a valuable basis for further exploration of IT-PEG-RGD nanoparticles and their anticancer mechanisms, highlighting the potential of theranostic nanoparticles in BC treatment.

2.
Angew Chem Int Ed Engl ; 62(18): e202300353, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36867014

RESUMO

Functional materials with multi-responsive properties and good controllability are highly desired for developing bioinspired and intelligent multifunctional systems. Although some chromic molecules have been developed, it is still challenging to realize in situ multicolor fluorescence changes based on a single luminogen. Herein, we reported an aggregation-induced emission (AIE) luminogen called CPVCM, which can undergo a specific amination with primary amines to trigger luminescence change and photoarrangement under UV irradiation at the same active site. Detailed mechanistic insights were carried out to illustrate the reactivity and reaction pathways. Accordingly, multiple-colored images, a quick response code with dynamic colors, and an all-round information encryption system were demonstrated to show the properties of multiple controls and responses. It is believed that this work not only provides a strategy to develop multiresponsive luminogens but also develops an information encryption system based on luminescent materials.

3.
Inorg Chem ; 58(1): 391-396, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30525548

RESUMO

Two stable Zn-cluster-based MOFs, [Zn9(btz)12(atdbc)3(DMF)]·3DMF·12H2O (compound 1, Hbtz = 1 H-benzotriazole, H2atdbc = 4,4'-(4-amino-1,2,4-triazol-3,5-diyl)dibenzoic acid, DMF = N, N-dimethylformamide) and [Zn4(btz)6(bcpt)]·3DMF (compound 2, H2bcpt = 3,5-bis(4'-carboxy-phenyl)-1,2,4-triazole), have been successfully constructed by adopting the mixed ligands approach. Both the compounds exhibit high chemical stability under aqueous solution and common organic solvents. Especially, compounds 1 and 2 can be stable in pH = 2 and pH = 12 solutions. Meanwhile, compound 1 exhibits good ability to selectively separate CO2 from CH4. CO2 over CH4 selectivity is 5.2 (0.5/0.5) and 5.7 (0.05/0.95) at 298 K under 1 bar, respectively, which may be used for the separation of gases in industrial applications. Moreover, compound 1 displays breathing behavior for small-molecule gases (N2, CO2, C2H6, and C3H8), and compound 2 only exhibits the same phenomenon for CO2 adsorption because of its ultramicroporous channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...