Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biophys Rep ; 10(1): 41-47, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38737477

RESUMO

Substrate stiffness is a microenvironment with a certain stiffness constructed by the extracellular matrix and adjacent cells, which plays an important role in the growth and development of cells and tissue formation. Studies have indicated that the stiffness of the brain is about 0.1-1 kPa. The physiological and pathological processes of the nervous system are mediated by the substrate stiffness that the neurons suffer. However, how substrate stiffness regulates these processes remains to be studied. Culturing neurons on substrates with different stiffness in vitro is one of the best methods to study the role of stiffness in regulating neuronal development and activity. In this study, by changing the preparation time and the activation time of polyacrylamide gel, we provide an improved method that achieves a low toxic substrate environment for better primary neuron adhesion and development. Hope that this method is convenient for those studying the role of substrate stiffness in neurons.

2.
Dalton Trans ; 53(16): 6974-6982, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563069

RESUMO

Tubular structured composites have attracted great interest in catalysis research owing to their void-confinement effects. In this work, we synthesized a pair of hollow N-doped carbon microtubes (NCMTs) with Fe3O4 nanoparticles (NPs) encapsulated inside NCMTs (Fe3O4@NCMTs) and supported outside NCMTs (NCMTs@Fe3O4) while keeping other structural features the same. The impact of structural effects on the catalytic activities was investigated by comparing a pair of hollow-structured nanocomposites. It was found that the Fe3O4@NCMTs possessed a higher peroxidase-like activity when compared with NCMTs@Fe3O4, demonstrating structural superiority of Fe3O4@NCMTs. Based on the excellent peroxidase-like catalytic activity and stability of Fe3O4@NCMTs, an ultra-sensitive colorimetric method was developed for the detection of H2O2 and GSH with detection limits of 0.15 µM and 0.49 µM, respectively, which has potential application value in biological sciences and biotechnology.


Assuntos
Carbono , Peróxido de Hidrogênio , Carbono/química , Peróxido de Hidrogênio/química , Catálise , Nanopartículas de Magnetita/química , Propriedades de Superfície , Glutationa/química , Materiais Biomiméticos/química , Nitrogênio/química , Colorimetria , Biomimética
3.
Inorg Chem ; 63(9): 4260-4268, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38372243

RESUMO

The tubular architecture with multiple components can bring synergistic effects to improve the enzyme-like activity of molybdenum-based nanomaterials. Here, a facile polypyrrole (PPy)-protected hydrothermal sulfidation process was implemented to engineer MoS2/Ag2S heterointerfaces encapsulated in one-dimensional (1D) PPy nanotubes with MoO3@Ag nanorods as the self-sacrificing precursor. Notably, the sulfidation treatment led to the generation of MoS2 nanosheets (NSs) and Ag2S nanoparticles (NPs) and the creation of a tubular structure with a "kill three birds with one stone" role. The Ag2S/MoS2@PPy nanotubes showed the synergistic combined effects of Ag2S NPs, MoS2 NSs, and the 1D tube-like nanostructure. Based on the synergistic effects from these multiple components and the tubular structure, Ag2S/MoS2@PPy nanocomposites were used as a colorimetric sensing platform for detecting H2O2. Moreover, the reduction of 4-nitrophenol (4-NP) revealed excellent catalytic activity in the presence of NaBH4 and Ag2S/MoS2@PPy nanocomposites. This work highlights the effects of MoS2/Ag2S heterointerfaces and the hierarchical tubular structure in catalysis, thereby providing a new avenue for reducing 4-NP and the enzyme-like catalytic field.

4.
Heliyon ; 9(12): e22641, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046176

RESUMO

The extent of immune-mediated hepatic damage (such as in viral hepatitis) is characterised by the downregulation of cytochrome P450s (CYPs), a class of drug-metabolising enzymes. However, whether this downregulation aids liver cells in maintaining their homeostasis or whether the damage is aggravated remains largely unexplored. Herein, we evaluated the effects of phosphorylation mediated by the protein kinase C (PKC)/cAMP-response element binding protein (CREB) and nitration mediated by inducible nitric oxide synthase (iNOS) on the downregulation of CYP2E1 during immune-mediated liver injury. Additionally, we investigated the regulatory mechanism mediated by the nuclear factor κB (NF-κB). The rat model of immune-mediated liver injury was replicated by administering a single i.v. injection of Bacillus Calmette-Guerin (BCG, 125 mg/kg) vaccine and three i.p. injections of ammonium pyrrolidine dithiocarbamate (25, 50, 100 mg/kg/d, days 11, 12, and 13); blood was then collected on day 14. Subsequently, the livers were extracted to identify the different pharmacokinetic and biochemical indicators involved in the process. Our study reports new findings on the dependence between PKC-mediated CREB phosphorylation in the anti-inflammatory pathway and nitration emergency induced by iNOS in pro-inflammatory pathways in the NF-κB pathway. The interaction of these two pathways leads to the downregulation and recovery of CYP2E1, thus alleviating inflammation and nitration stress. Our results confirm that BCG-mediated downregulation of CYP2E1 is linked to iNOS-induced nitration and PKC/NF-κB-mediated CREB phosphorylation, and that NF-κB is an important molecular target in this process. These findings suggest that the downregulation of CYP2E1 may be an autonomous process characteristic of liver cells, helping them adapt to environmental changes, alleviate further hypoxia in inflamed tissues, and minimise exposure to toxic and harmful metabolites.

5.
Polymers (Basel) ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447430

RESUMO

Heavy metal wastewater poses a significant environmental challenge due to its harmful effect on organisms and difficult biodegradation. To address this issue, hydrogel has been used as a promising solution for the adsorption of heavy metal ions in water, offering advantages such as low cost, simple design, and environmental friendliness. In this study, we synthetized a novel poly-acrylamide/acrylic acid/vinyl imidazole bromide (PAM/AA/[Vim]Br2) hydrogel as an effective adsorbent for the removal of NiII, CuII, ZnII, and CrIII from water. The structure of the hydrogel was characterized by using techniques such as Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). By exploring various parameters such as monomer ratio, neutralization degree, crosslinking agent addition amount, and initiator addition amount, the highest swelling ratio of the PAM/AA/[Vim]Br2 hydrogel reached 40,012%. One of the notable aspects of this study lay in the investigation of the adsorption behavior of the hydrogel towards heavy metal ions at different concentrations. The adsorption isotherm calculations and X-ray photoelectron spectroscopy (XPS) analysis revealed distinct adsorption mechanisms. At low concentrations, the hydrogel exhibits a multilayer physical adsorption mechanism, with heavy metal ion removal rates exceeding 80%; while at high concentrations, it demonstrates a monolayer chemical adsorption mechanism, with heavy metal ion removal rates above 90%. This dual mechanism approach distinguishes our study from previous reports on the removal of heavy metal ions using hydrogels and shows good ion adsorption efficiency at both high and low concentrations. To the best of our knowledge, this is the first report to explore the removal of heavy metal ions from water using hydrogels with such intriguing dual mechanisms. Overall, the utilization of the PAM/PAA/[Vim]Br2 hydrogel as an adsorbent for heavy metal ion removal presents a promising and innovative approach, contributing to the development of environmentally friendly solutions for heavy metal wastewater treatment.

6.
Anal Chem ; 95(31): 11706-11713, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459193

RESUMO

Cell membrane-associated RNA (mem-RNA) has been demonstrated to be cell-specific and disease-related and are considered as potential biomarkers for disease diagnostics, drug delivery, and cell screening. However, there is still a lack of methods specifically designed to extract mem-RNA from cells, limiting the discovery and applications of mem-RNA. In this study, we propose the first all-in-one solution for high-purity mem-RNA isolation based on two types of magnetic nanoparticles, named MREMB (Membrane-associated RNA Extraction based on Magnetic Beads), which achieved ten times enrichment of cell membrane components and over 90% recovery rate of RNA extraction. To demonstrate MREMB's potential in clinical research, we extracted and sequenced mem-RNA of typical breast cancer MCF-7, MDA-MB-231, and SKBR-3 cell lines and non-neoplastic breast epithelial cell MCF-10A. Compared to total RNA, sequencing results revealed that membrane/secreted protein-encoding mRNAs and long noncoding RNAs (lncRNAs) were enriched in the mem-RNA, some of which were significantly overexpressed in the three cancer cell lines, including extracellular matrix-related genes COL5A1 and lncRNA TALAM1. The results indicated that MREMB could enrich membrane/secreted protein-coding RNA and amplify the expression differences of related RNAs between cancer and non-neoplastic cells, promising for cancer biomarker discovery.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , RNA , Linhagem Celular , Mama/metabolismo , Membrana Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
7.
BMC Biol ; 21(1): 158, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443000

RESUMO

BACKGROUND: Neurotransmitter release depends on the fusion of synaptic vesicles with the presynaptic membrane and is mainly mediated by SNARE complex assembly. During the transition of Munc18-1/Syntaxin-1 to the SNARE complex, the opening of the Syntaxin-1 linker region catalyzed by Munc13-1 leads to the extension of the domain 3a hinge loop, which enables domain 3a to bind SNARE motifs in Synaptobrevin-2 and Syntaxin-1 and template the SNARE complex assembly. However, the exact mechanism of domain 3a extension remains elusive. RESULTS: Here, we characterized residues on the domain 3a hinge loop that are crucial for the extension of domain 3a by using biophysical and biochemical approaches and electrophysiological recordings. We showed that the mutation of residues T323/M324/R325 disrupted Munc13-1-mediated SNARE complex assembly and membrane fusion starting from Munc18-1/Syntaxin-1 in vitro and caused severe defects in the synaptic exocytosis of mouse cortex neurons in vivo. Moreover, the mutation had no effect on the binding of Synaptobrevin-2 to isolated Munc18-1 or the conformational change of the Syntaxin-1 linker region catalyzed by the Munc13-1 MUN domain. However, the extension of the domain 3a hinge loop in Munc18-1/Syntaxin-1 was completely disrupted by the mutation, leading to the failure of Synaptobrevin-2 binding to Munc18-1/Syntaxin-1. CONCLUSIONS: Together with previous results, our data further support the model that the template function of Munc18-1 in SNARE complex assembly requires the extension of domain 3a, and particular residues in the domain 3a hinge loop are crucial for the autoinhibitory release of domain 3a after the MUN domain opens the Syntaxin-1 linker region.


Assuntos
Proteínas do Tecido Nervoso , Proteína 2 Associada à Membrana da Vesícula , Camundongos , Animais , Proteínas do Tecido Nervoso/genética , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Sintaxina 1/genética , Sintaxina 1/química , Sintaxina 1/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Ligação Proteica
8.
Adv Drug Deliv Rev ; 196: 114791, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004939

RESUMO

Since super-resolution fluorescence microscopic technology breaks the diffraction limit that has existed for a long time in optical imaging, it can observe the process of synapses formed between nerve cells and the protein aggregation related to neurological disease. Thus, super-resolution fluorescence microscopic imaging has significantly impacted several industries, including drug development and pathogenesis research, and it is anticipated that it will significantly alter the future of life science research. Here, we focus on several typical super-resolution fluorescence microscopic technologies, introducing their benefits and drawbacks, as well as applications in several common neurological diseases, in the hope that their services will be expanded and improved in the pathogenesis and drug treatment of neurological diseases.


Assuntos
Neurônios , Imagem Óptica , Humanos , Microscopia de Fluorescência/métodos
9.
Materials (Basel) ; 16(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36984151

RESUMO

The piezoelectric actuator has been widely used in modern precision cutting technology due to its fast response speed and high positioning accuracy. In recent years, with the development of precision technology, modern cutting requires higher and higher cutting accuracy and efficiency. Therefore, this paper proposes a feedforward control method based on the modified Bouc-Wen (MBW) model. Firstly, a novel asymmetrical modified Bouc-Wen model with an innovative form of shape control function is developed to model the hysteresis nonlinearity property of piezoelectric actuators. Then, a self-adaptive cooperative particle swarm optimization (PSO) algorithm is developed to identify the parameters of MBW model. The comparative evaluation reveals that the MBW model outperforms the classical Bouc-Wen (CBW) model by 66.4% in modeling accuracy. Compared with traditional PSO algorithm, the self-adaptive cooperative PSO algorithm can obtain minimum fitness in parameter identification. Furthermore, the feedforward control strategy is realized to improve the position tracking accuracy. A position tracking experiment verifies that the feedforward control strategy improves the tracking accuracy of piezoelectric actuators significantly compared with the open-loop control strategy.

10.
Materials (Basel) ; 16(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36984152

RESUMO

Piezoelectric actuators are characterized by high positioning accuracy, high stiffness and a fast response and are widely used in ultra-precision machining technologies such as fast tool servo technology and ultrasonic machining. The rapid response characteristics of piezoelectric actuators often determine the overall quality of machining. However, there has been little research on the fast response characteristics of piezoelectric actuators, and this knowledge gap will lead to low precision and poor quality of the final machining. The fast response characteristics of a piezoelectric actuator were studied in this work. Firstly, the piezoelectric actuator was divided into a no-load state and a load state according to the working state. A fast response analysis and output characteristic analysis were carried out, the corresponding dynamic model was established, and then the model was simulated. Finally, an experimental system was established to verify the dynamic model of the piezoelectric actuator's fast response by conducting an experiment in which the piezoelectric actuator bounces a steel ball. The experimental results verify the correctness of the model and show that the greater the cross-sectional area and height of the piezoelectric actuator, the higher the bouncing height of the ball, and the better the dynamic performance of the piezoelectric actuator. It is believed that this study has guiding significance for the application of the dynamic characteristics of piezoelectric actuators in the machining field.

11.
Cell Mol Immunol ; 20(1): 51-64, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36447031

RESUMO

Boosting tumor immunosurveillance with vaccines has been proven to be a feasible and cost-effective strategy to fight cancer. Although major breakthroughs have been achieved in preventative tumor vaccines targeting oncogenic viruses, limited advances have been made in curative vaccines for virus-irrelevant malignancies. Accumulating evidence suggests that preconditioning tumor cells with certain cytotoxic drugs can generate whole-cell tumor vaccines with strong prophylactic activities. However, the immunogenicity of these vaccines is not sufficient to restrain the outgrowth of existing tumors. In this study, we identified arsenic trioxide (ATO) as a wide-spectrum cytotoxic and highly immunogenic drug through multiparameter screening. ATO preconditioning could generate whole-cell tumor vaccines with potent antineoplastic effects in both prophylactic and therapeutic settings. The tumor-preventive or tumor-suppressive benefits of these vaccines relied on CD8+ T cells and type I and II interferon signaling and could be linked to the release of immunostimulatory danger molecules. Unexpectedly, following ATO-induced oxidative stress, multiple cell death pathways were activated, including autophagy, apoptosis, necroptosis, and ferroptosis. CRISPR‒Cas9-mediated knockout of cell death executors revealed that the absence of Rip3, Mlkl, or Acsl4 largely abolished the efficacy of ATO-based prophylactic and therapeutic cancer vaccines. This therapeutic failure could be rescued by coadministration of danger molecule analogs. In addition, PD-1 blockade synergistically improved the therapeutic efficacy of ATO-based cancer vaccines by augmenting local IFN-γ production.


Assuntos
Antineoplásicos , Arsenicais , Vacinas Anticâncer , Ferroptose , Neoplasias , Humanos , Trióxido de Arsênio/farmacologia , Linfócitos T CD8-Positivos , Necroptose , Arsenicais/farmacologia , Arsenicais/uso terapêutico , Óxidos/farmacologia , Óxidos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias/tratamento farmacológico , Imunidade , Linhagem Celular Tumoral
12.
Dalton Trans ; 51(43): 16681-16687, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36281653

RESUMO

Engineering a tube-like architecture with bimetallic nanoparticles (NPs) has been considered an effective strategy for enhancing catalytic performance. Herein, we report a simple method for preparing one-dimensional (1D) carbon-based tubular composites incorporated with bimetallic active CoNi alloy NPs. CoNi alloy NPs were produced from the co-reduction of Co and Ni ions existing within a zeolitic imidazolate framework (ZIF)-based precursor and polydopamine (PDA) layer after N2-protected thermal treatment. Moreover, the coated PDA outer layer was preserved for constructing a tubular structure, which eventually resulted in a composite of N-doped carbon microtubes (NCMTs) and CoNi NPs (CoNi@NCMTs). The resultant CoNi@NCMTs exhibited excellent catalytic activity for reducing 4-nitrophenol to 4-aminophenol. The synergy between the N-doped carbon microtubes and the well-dispersed bimetallic CoNi NPs provided outstanding catalytic performance, constructing inexpensive transition metal nanocatalysts. Moreover, the catalytic activity of the CoNi@NCMTs was well conserved even after five consecutive cyclic reactions. Importantly, hierarchical MoO3@CoNi-LDH can be a good precursor to obtain tube-like structured CoNi-LDH, CoNi-LDH@SiO2 and CoNi-LDH@NiMoO4 composites.

13.
Exp Hematol Oncol ; 11(1): 34, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655245

RESUMO

BACKGROUND: Chronic graft-versus-host disease (cGVHD) remains a major complication during the late phase of allogeneic hematopoietic stem cell transplantation (allo-HSCT). IL-39, a newly described pro-inflammatory cytokine belonging to the IL-12 family, plays a role in lupus development. Recently, IL-39 has been identified as a pathogenic factor in acute GVHD (aGVHD). However, the role of IL-39 in the pathogenesis of cGVHD remains unclear. METHODS: We constructed a recombinant IL-39 plasmid and established scleroderma and lupus-like cGVHD models. Quantitative PCR and enzyme-linked immunosorbent assay (ELISA) were used to detect IL-39 expression in mice and patients post transplantation, respectively. Hydrodynamic gene transfer (HGT) was performed to achieve IL-39 overexpression in vivo. Multiparameter flow cytometry, western blotting, and assays in vitro were performed to investigate the effect of IL-39 on cGVHD. RESULTS: The relative expression of IL-23p19 and EBi3 was significantly increased in the intestine of cGVHD mice on day 40 post allo-HSCT, and IL-39 levels were significantly elevated in the serum of patients following allo-HSCT. Overexpression of IL-39 significantly aggravated the severity of cGVHD. Increased IL-39 levels promoted T-cell activation and germinal center responses, and may exacerbate thymic damage. Consistently, blocking IL-39 markedly ameliorated immune dysregulation in the cGVHD mice. Furthermore, we found that IL-39 was produced by B cells, CD11b+ cells, and CD8+T cells after activation. Stimulation of IL-39 led to upregulation of the IL-39 receptor on CD4+T cells and further caused activation of the STAT1/STAT3 pathway, through which IL-39 may exert its pro-inflammatory effects. CONCLUSION: Our study reveals a critical role for IL-39 in cGVHD pathogenesis and indicates that IL-39 may serve as a potential therapeutic target for cGVHD prevention.

14.
Oncoimmunology ; 11(1): 2088467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756844

RESUMO

Interleukin-1α (IL-1α) plays an important role in inflammation and hematopoiesis. Many tumors have increased IL-1α expression. However, the immune regulatory role of secreted IL-1α in tumor development and whether it can be targeted for cancer therapy are still unclear. Here, we found that tumoral-secreted IL-1α significantly promoted hepatocellular carcinoma (HCC) development in vivo. Tumoral-released IL-1α were found to inhibit T and NK cell activation, and the killing capacity of CD8+ T cells. Moreover, MDSCs were dramatically increased by tumoral-released IL-1α in both spleens and tumors. Indeed, higher tumoral IL-1α expression is associated with increased tumoral infiltration of MDSCs in HCC patients. Further studies showed that tumoral-released IL-1α promoted MDSC recruitment to the tumor microenvironment through a CXCR2-dependent mechanism. Depletion of MDSCs could diminish the tumor-promoting effect of tumoral-released IL-1α. On the contrary, systemic administration of recombinant IL-1α protein significantly inhibited tumor development by activating T cells. In fact, IL-1α protein could promote T cell activation and enhance the cytotoxicity of CD8+ T cells in vitro. Thus, our study demonstrated that tumoral-released IL-1α promoted tumor development through recruiting MDSCs to inhibit T cell activation, while systemic IL-1α directly promoted anti-tumor T cell responses. We further identified calpain 1 as the major intracellular protease mediating tumoral IL-1α secretion. Calpain 1 KO tumors had diminished IL-1α release and reduced tumor development. Thus, our findings provide new insights into the functions of secreted IL-1α in tumor immunity and its implications for immunotherapy.


Assuntos
Calpaína , Carcinoma Hepatocelular , Interleucina-1alfa , Neoplasias Hepáticas , Linfócitos T CD8-Positivos/imunologia , Calpaína/imunologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Humanos , Interleucina-1alfa/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Microambiente Tumoral
15.
Comput Math Methods Med ; 2022: 1527159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432583

RESUMO

Alzheimer's disease (AD) is a brain illness that affects learning and memory capacities over time. In recent investigations, acupuncture has been shown to be an effective alternative treatment for AD. We investigated the effect of acupuncture on learning and memory abilities using a water maze in APP/PS1 transgenic mice. The amounts of Aß and tau protein in mice's hippocampal tissue were determined using Western blot. The levels of IL-1ß, IL-10, LPS and TNF-α in mice's serum were measured using ELISA. The variations of gut microbiota in mice's feces were determined using the 16SrDNA technique, and the metabolites were examined using a untargeted metabolomics methodology. The results showed that acupuncture treatment improved mice's learning and memory abilities substantially. Acupuncture therapy regulated the Aß and tau protein concentration as well as the levels of IL-10 and LPS. Acupuncture treatment influenced the mouse microbiota and metabolites and had been linked to six biochemical pathways. This study adds to our understanding of the effect of acupuncture on AD and opens the door to further research into the alterations of intestinal bacteria in the presence of AD.


Assuntos
Terapia por Acupuntura , Doença de Alzheimer , Microbioma Gastrointestinal , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Humanos , Interleucina-10/farmacologia , Lipopolissacarídeos , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Proteínas tau/genética
16.
Stem Cell Res ; 59: 102634, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34995844

RESUMO

The features of 16p11.2 deletion phenotype is developmental delay, intellectual disability, and autism spectrum disorder. Seizures are observed in approximately 20% of individuals with the microdeletion. Induced pluripotent stem cells (iPSCs) were generated from erythroblasts obtained from a child diagnosed with benign familial infantile epilepsy, caused by 16p11.2 deletion. These iPSCs exhibited stable amplification, expressed pluripotent markers, and differentiated spontaneously into three germ layers in vitro.

17.
Iran J Pharm Res ; 21(1): e129483, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36937209

RESUMO

Background: The use of police breath alcohol detectors in rat breath alcohol detection experiments has always been a challenge because of the small lung capacity and inability of rats to actively inhale. However, the method of using gas chromatography to detect blood alcohol concentration is time-consuming, complex, relatively expensive, and cannot achieve on-site detection and multi-point unlimited non-invasive detection. Objectives: In this study, a laboratory method was validated for rat breath ethanol concentration (BrAC) measurement to estimate blood ethanol concentration (BAC) in rats. Methods: The rats were placed in a gas collection bottle, the breath sample was drawn out with a syringe, and injected into the mouthpiece of the breath alcohol detector through a rubber tube. The results were immediately detected and automatically converted to BAC. Male rats were randomly divided into three groups. The control group received an intraperitoneal injection of normal saline, the liver injury group received an intraperitoneal injection of 50% Carbon tetrachloride (CCL4 1 mL.kg-1), and the induction group received an intraperitoneal injection of phenobarbital sodium (75 mg.kg-1). Western blot analysis was used to detect the protein expression of CYP2E1. Similar grouping and experimental methods were used for female rats. Results: This method was reproducible. The metabolic activity of CYP2E1 was downregulated in the injury group and upregulated in the induction group, which was consistent with the results obtained for CYP2E1 protein expression. Conclusions: Our results confirmed that the rat gas cylinder breath alcohol assay can be used for multiple detections with immediate and non-invasive determination of alcohol metabolizing capacity. This is important for studies that require repeated assessment of blood alcohol levels.

18.
Inorg Chem ; 61(1): 542-553, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34894692

RESUMO

The structural design of multiple functional components could integrate synergistic effects to enhance the catalytic performance of MoS2-based composites for catalytic applications. Herein, one-dimensional (1D) Co-MoS2/Pd@NCMTs composites were designed to prepare Co-doped MoS2/Pd nanosheets (NSs) on N-doped carbon microtubes (NCMTs) from tubular polypyrrole (PPy) as multifunctional catalysts. The Co-MoS2/Pd@NCMTs composites integrated the synergistic effects of Co-doping, a 1D tubular structure, and noble-metal Pd decoration. Thus, a higher catalytic activity was observed in 4-nitrophenol (4-NP) reduction and peroxidase-like catalysis than other components, such as MoS2, MoS2@NCMTs, and Co-MoS2@NCMTs. Remarkably, the results indicated that the dissolution, diffusion, and redistribution led to the dissolution of MoO3@ZIF-67 cores and generation of Co-doped MoS2 NSs. Benefiting from the synergistic effect from these components, Co-MoS2/Pd@NCMTs were considered as a facile colorimetric sensing platform for detecting tannic acid. Moreover, outstanding performance was realized in the reduction of 4-NP with the composites. Thus, we provide a simple synthetic strategy for simultaneously integrating electronic engineering and structural advantages to develop an efficient MoS2-based multifunctional catalyst.

20.
Reprod Biomed Online ; 43(6): 1002-1010, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34740515

RESUMO

RESEARCH QUESTION: Is there any difference in live birth rate between the natural cycle and hormone replacement therapy (HRT) endometrial preparation protocols for women with regular menstrual cycles undergoing their first single vitrified-warmed euploid blastocyst transfer? DESIGN: This was a retrospective cohort study that enrolled 722 women who underwent vitrified-warmed euploid blastocyst transfer at assisted reproductive technology (ART) centre of The First Affiliated Hospital of Zhengzhou University, from January 2013 to December 2019. Univariate and multivariate logistic regression models were used to analyse the relationship between the endometrial preparation protocols and live birth rates. Stratified analyses and sensitivity analyses were performed to ensure the reliability and stability of the results. RESULTS: A total of 722 single vitrified-warmed euploid blastocyst transfer cycles were included. Overall, the live birth rates were 50.00% (110/220) in the natural cycle group and 47.61% (239/502) in the HRT group. Multiple logistic regression analyses showed that there was no significant association (adjusted odds ratio 0.82; 95% confidence interval 0.56-1.20; P = 0.313) between natural cycle and HRT protocols and the live birth rate. Interaction analysis showed that there was no significant difference in live birth rates between the two groups for any subgroup after adjusting for confounding factors. CONCLUSIONS: For single vitrified-warmed euploid blastocyst transfer, natural cycle and HRT endometrial preparation protocols result in similar live birth rates among women with regular menstrual cycles. Further studies are needed into the effects of endometrial preparation protocols on pregnancy outcomes.


Assuntos
Coeficiente de Natalidade , Transferência Embrionária/métodos , Terapia de Reposição Hormonal , Nascido Vivo , Adulto , Criopreservação , Feminino , Humanos , Gravidez , Resultado da Gravidez , Taxa de Gravidez , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...