Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Labelled Comp Radiopharm ; 67(8): 295-304, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38837480

RESUMO

Cathepsin B (CTSB) is a lysosomal protease that is overexpressed in tumor cells. Radioimmunoconjugates (RICs) composed of CTSB-recognizing chelating agents are expected to increase the molecular weights of their radiometabolites by forming conjugates with CTSB in cells, resulting in their improved retention in tumor cells. We designed a novel CTSB-recognizing trifunctional chelating agent, azide-[111In]In-DOTA-CTSB-substrate ([111In]In-ADCS), to synthesize a RIC, trastuzumab-[111In]In-ADCS ([111In]In-TADCS), and evaluated its utility to improve tumor retention of the RIC. [111In]In-ADCS and [111In]In-TADCS were synthesized with satisfactory yield and purity. [111In]In-ADCS was markedly stable in murine plasma until 96 h postincubation. [111In]In-ADCS showed binding to CTSB in vitro, and the conjugation was blocked by the addition of CTSB inhibitor. In the internalization assay, [111In]In-TADCS exhibited high-level retention in SK-OV-3 cells, indicating the in vitro utility of the CTSB-recognizing unit. In the biodistribution assay, [111In]In-TADCS showed high-level tumor accumulation, but the retention was hardly improved. In the first attempt to combine a CTSB-recognizing unit and RIC, these findings show the fundamental properties of the CTSB-recognizing trifunctional chelating agent to improve tumor retention of RICs.


Assuntos
Catepsina B , Quelantes , Imunoconjugados , Catepsina B/metabolismo , Quelantes/química , Quelantes/síntese química , Animais , Camundongos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Distribuição Tecidual , Linhagem Celular Tumoral , Humanos , Radioisótopos de Índio/química , Técnicas de Química Sintética , Trastuzumab/química
2.
J Med Chem ; 66(12): 8043-8053, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37285471

RESUMO

Prostate-specific membrane antigen (PSMA) is a promising target for metastatic castration-resistant prostate cancer. We previously reported the effectiveness of PSMA-DA1 as a PSMA-targeting radiotheranostic agent containing an albumin binder moiety. To further enhance tumor uptake, we newly designed PSMA-NAT-DA1 (PNT-DA1) by the introduction of a lipophilic linker into PSMA-DA1. The PSMA affinity of [111In]In-PNT-DA1 was increased (Kd = 8.20 nM) compared with that of [111In]In-PSMA-DA1 (Kd = 89.4 nM). [111In]In-PNT-DA1 showed markedly high tumor accumulation (131.6% injected dose/g at 48 h post-injection), and [111In]In-PNT-DA1 enabled the visualization of the tumor clearly at 24 h post-injection with SPECT/CT imaging. The administration of [225Ac]Ac-PNT-DA1 (2.5 kBq) led to shrinkage of the tumor without marked toxicity, and the antitumor effects of [225Ac]Ac-PNT-DA1 were superior to those of [225Ac]Ac-PSMA-DA1 and [225Ac]Ac-PSMA-617, which is the current gold standard for PSMA-targeting 225Ac-endoradiotherapy. These results suggest that the combination of [111In]In-PNT-DA1 and [225Ac]Ac-PNT-DA1 comprises a promising method of PSMA-targeting radiotheranostics.


Assuntos
Glutamato Carboxipeptidase II , Neoplasias da Próstata , Humanos , Masculino , Albuminas , Antígenos de Superfície , Linhagem Celular Tumoral , Índio/química , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/uso terapêutico , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Radioisótopos de Índio/química , Radioisótopos de Índio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...