Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732889

RESUMO

The paper investigates a modified adaptive super-twisting sliding mode control (ASTSMC) for robotic manipulators with input saturation. To avoid singular perturbation while increasing the convergence rate, a modified sliding mode surface (SMS) is developed in this method. Using the proposed SMS, an ASTSMC is developed for robot manipulators, which not only achieves strong robustness but also ensures finite-time convergence. The boundary of lumped uncertainties cannot be easily obtained. A modified adaptive law is developed such that the boundaries of time-varying disturbance and its derivative are not required. Considering input saturation in practical cases, an ASTSMC with saturation compensation is proposed to reduce the effect of input saturation on tracking performances of robot manipulators. The finite-time convergence of the proposed scheme is analyzed. Through comparative simulations against two other sliding mode control schemes, the proposed method has been validated to possess strong adaptability, effectively adjusting control gains; simultaneously, it demonstrates robustness against disturbances and uncertainties.

2.
Materials (Basel) ; 15(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234028

RESUMO

The carbon fiber-reinforced composite (CFRP) has the properties of a high specific strength, low density and excellent corrosion resistance; it has been widely used in aerospace and automobile lightweight manufacturing as an important material. To improve the CFRP cutting quality in the manufacturing process, a nanosecond laser with a wavelength of 532 nm was applied to cut holes with a 2-mm-thick CFRP plate by using laser rotational cutting technology. The influence of different parameters on the heat-affected zone, the cutting surface roughness and the hole taper was explored, and the cutting process parameters were optimized. With the optimized cutting parameters, the minimum value of the heat-affected zone, the cutting surface roughness and the hole taper can be obtained, which are 71.7 µm, 2.68 µm and 0.64°, respectively.

3.
Micromachines (Basel) ; 14(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36677085

RESUMO

Carbon fiber-reinforced composites are widely used in automobile, aerospace and military lightweight manufacturing due to their excellent mechanical properties such as light weight, excellent fracture resistance, corrosion resistance and wear resistance, etc. However, because of their high hardness, anisotropy and low interlayer strength characteristics, there are many problems with machine carbon fiber-reinforced composites with traditional methods. As a non-contact processing technology, laser machining technology has lots of advantages in carbon fiber-reinforced composites processing. However, there are also some defects produced in laser machining process such the heat affected zone, delamination and fiber extraction due to the great difference of physical properties between the carbon fibers and the resin matrix. To improve the quality of carbon fiber-reinforced composites laser machining, lots of works have been carried out. In this paper, the research progress of carbon fiber-reinforced composites laser machining parameters optimization and numerical simulation was summarized, the characteristics of laser cutting carbon fiber-reinforced composites and cutting quality influence factors were discussed, and the developing trend of the carbon fiber-reinforced composites laser cutting was prospected.

4.
Materials (Basel) ; 16(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36614608

RESUMO

Carbon fiber reinforced thermosetting composites (CFRTS) and TC4 alloy are important structural materials for lightweight manufacturing. The hybrid structure of these two materials has been widely used in the aerospace field. However, the CFRTS-TC4 alloy joint formed by the traditional connection method has many challenges, such as poor environmental adaptability and stress concentration. Laser micro-texturing of metal surface-assisted laser connection of CFRTS and TC4 alloy has great potential in improving joint strength. In order to study the effect of laser micro-texturing on the laser bonding of CFRTS and TC4 alloy, the simulation and experimental research of laser welding of TC4 alloy and CFRTS based on laser micro-textures with different scanning spacings were carried out, and the interface hybrid pretreatment method of laser cleaning and laser plastic-covered treatment was introduced to assist the high-quality laser bonding of heterogeneous joints. The results showed that the established finite element model of CFRTS-TC4 alloy laser welding can predict the temperature field distribution of the joint during the welding process and reflect the forming mechanism of the joint. The laser micro-textures with different scanning spacings will lead to a difference in the temperature field distribution on the polyamide (PA6) interface, which leads to a change in heat input on the CFRTS surface. When the laser scanning spacing is 0.3 mm, the joint strength can reach 14.3 MPa. The failure mechanism of the joint mainly includes the cohesive failure of the internal tear of the carbon fiber and the interfacial failure of the interface between the PA6 resin and the TC4 alloy.

5.
ISA Trans ; 102: 304-313, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32151393

RESUMO

Nonlinear and high-order characteristics could directly hinder the application of many advanced control algorithms for electro-hydraulic system which is a coupling system with double-dynamics of mechanical and hydraulic components. In this paper, a practical torque tracking control using singular perturbation theory is proposed for electro-hydraulic load simulator. The system model is transformed into a singularly perturbed form including a slow mechanical system and a fast hydraulic system. To achieve high accuracy and strong robustness, an active disturbance rejection control based on desired model compensation is developed for the slow mechanical system. It is proved that the mechanical system with developed slow controller is exponentially stable. A proportional control law is employed for the fast hydraulic system. This hydraulic system with developed fast controller is demonstrated to be exponentially stable. Stability of the whole closed-loop system is theoretically analyzed using the extended Tikhonov's theorem. Experimental results validate the presented control scheme.

6.
ISA Trans ; 91: 41-51, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30765131

RESUMO

This study proposes an adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. A transformation with respect to tracking error using certain performance functions is used to ensure the transient and steady-state performances of the trajectory tracking control for robotic manipulators. Using the transformed error, a nonsingular terminal sliding mode surface is proposed. A continuous terminal sliding mode control (SMC) is presented to stabilize the system. To compensate for the uncertainty and external disturbance, a novel sliding mode disturbance observer is proposed. Considering the unknown boundary of the derivative of a lumped disturbance, an adaptive law based on the idea of equivalent control is designed. Combining the adaptive law, continuous nonsingular terminal SMC, and sliding mode disturbance observer, the adaptive sliding mode disturbance rejection control with prescribed performance is developed. Simulations are carried out to demonstrate the effectiveness of the proposed approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...