Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 633: 167-178, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29573683

RESUMO

There is an increased interest in incorporating multi-wall carbon nanotubes (MWCNTs) into polymer matrices to control the adhesion of bacteria to surfaces and the subsequent formation of biofilm growth on the surface of water pipes, food packages, and medical devices. Microbial interactions with carbon nanotube-polymer composites in the environment are not well understood. The growth of Pseudomonas fluorescens (gram-negative) and Mycobacterium smegmatis (gram-positive) biofilms on copper, polyethylene (PE), polyvinyl chloride, and stainless steel was compared with growth on MWCNT-PE composites in order to gain insight into the effect of the surface properties of nanomaterials on the attachment and proliferation of microorganism which could result in the engineering of better, non-fouling materials. A statistical analysis of the biofilm growth showed a significant impact of materials for both P. fluorescens (p < 0.0001) and M. smegmatis (p = 0.00426). Biofilm growth after 56 days on PE compared to biofilm growth on copper surfaces decreased by 46.4% and 34.9% for P. fluorescens and M. smegmatis, respectively. Biofilm growth on PE-multiwall-carbon-nanotubes (MWCNTs)-composites surface compared to PE decreased by 89.3% and 29% for P. fluorescens and M. smegmatis, respectively. Bacterial species (p < 0.0006) and surface roughness (p < 0.0001) were important factors in determining the attachment and initial biofilm growth rate. The interactions between cells and material surface could be attributed to the complicated and collective effect of electrostatic forces, hydrophobic interactions, and hydrogen/covalent bonding. Further study is needed to determine whether or not there is a difference between the cell attachment in the exponential growth phase and the stationary, or decay, phase cells.

2.
Bioresour Technol ; 161: 109-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24690581

RESUMO

This study focuses on the interaction of ceria nanoparticles (CeO2-NPs) with Pseudomonas fluorescens and Mycobacterium smegmatis biofilms. Confocal laser microscopy and transmission electron microscopy determined the distribution of NPs in the complex structures of biofilm at molecular levels. Visual data showed that most of the adsorption takes place on the bacterial cell walls and spores. The interaction of nanoparticles (NPs) with biofilms reached equilibrium after the initial high adsorption rate regardless of biofilm heterogeneity and different nanoparticle concentrations in the bulk liquid. Physical processes may dominate this sorption phenomenon. Pseudo first order sorption kinetics was used to estimate adsorption and desorption rate of CeO2-NPs onto biofilms. When biofilms got exposed to CeO2-NPs, a self-protecting mechanism was observed. Cells moved away from the bulk solution in the biofilm matrix, and portions of biofilm outer layer were detached, hence releasing some CeO2-NPs back to the bulk phase.


Assuntos
Biofilmes , Cério/química , Modelos Químicos , Mycobacterium smegmatis/fisiologia , Nanopartículas/química , Pseudomonas fluorescens/fisiologia , Adsorção , Cinética
3.
Chemosphere ; 88(2): 229-34, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22436586

RESUMO

In this paper, H(2)S in gas stream was successfully decomposed at atmospheric pressure by dielectric barrier discharge plasma and VUV-UV radiation from a combined plasma photolysis reactor (CDBD). In comparison with DBD, CDBD enhanced H(2)S removal efficiency significantly at the same applied voltage, inlet H(2)S concentration and gas residence time. H(2)S removal efficiency was determined as a function of Kr pressure, applied voltage, inlet H(2)S concentration, and gas residence time. H(2)S removal efficiency could reach as high as 93% at inlet H(2)S concentration of 27.1 mg m(-3), residence time of 0.4 s, and applied voltage of 7.5 kV. The main products were discerned as H(2)O and SO(4)(2-) based on FTIR and IC analysis.


Assuntos
Poluentes Atmosféricos/química , Sulfeto de Hidrogênio/química , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Pressão Atmosférica , Sulfeto de Hidrogênio/análise , Fotólise , Eliminação de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...