Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 130: 155373, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850630

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is an acute respiratory disease characterized by bilateral chest radiolucency and severe hypoxemia. Quzhou Fructus Aurantii ethyl acetate extract (QFAEE), which is prepared from the traditional Chinese respiratory anti-inflammatory natural herb Quzhou Fructus Arantii, has the potential to alleviate ARDS. In this work, we aimed to investigate the potential and mechanism underlying the action of QFAEE on ARDS and how QFAEE modulates the STING pathway to reduce type I interferon release to alleviate the inflammatory response. METHODS: Lipopolysaccharide (LPS), a potential proinflammatory stimulant capable of causing pulmonary inflammation with edema after nasal drops, was employed to model ARDS in vitro and in vivo. Under QFAEE intervention, the mechanism of action of QFAEE to alleviate ARDS was explored in this study. TREX1-/- mice were sued as a research model for the activation of the congenital STING signaling pathway. The effect of QFAEE on TREX1-/- mice could explain the STING-targeted effect of QFAEE on alleviating the inflammatory response. Our explorations covered several techniques, Western blot, histological assays, immunofluorescence staining, transcriptomic assays and qRT-PCR to determine the potential mechanism of action of QFAEE in antagonizing the inflammatory response in the lungs, as well as the mechanism of action of QFAEE in targeting the STING signaling pathway to regulate the release of type I interferon. RESULTS: QFAEE effectively alleviates ARDS symptoms in LPS-induced ARDS. We revealed that the mechanism underlying LPS-induced ARDS is the STING-TBK1 signaling pathway and further elucidated the molecular mechanism of QFAEE in the prevention and treatment of ARDS. QFAEE reduced the release of type I interferons by inhibiting the STING-TBK1-IRF3 axis, thus alleviating LPS-induced pneumonia and lung cell death in mice. Another key finding is that activation of the STING pathway by activators or targeted knockdown of the TREX1 gene can also induce ARDS. As expected, QFAEE was found to be an effective protective agent in alleviating ARDS and the antagonistic effect of QFAEE on ARDS was achieved by inhibiting the STING signaling pathway. CONCLUSIONS: The main anti-inflammatory effect of QFAEE was achieved by inhibiting the STING signaling pathway and reducing the release of type I interferons. According to this mechanism of effect, QFAEE can effectively alleviate ARDS and can be considered a potential therapeutic agent. In addition, the STING pathway plays an essential role in the development and progression of ARDS, and it is a potential target for ARDS therapy.


Assuntos
Anti-Inflamatórios , Interferon Tipo I , Lipopolissacarídeos , Proteínas de Membrana , Síndrome do Desconforto Respiratório , Animais , Interferon Tipo I/metabolismo , Camundongos , Anti-Inflamatórios/farmacologia , Proteínas de Membrana/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Humanos , Camundongos Endogâmicos C57BL , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/induzido quimicamente
2.
Biomed Pharmacother ; 162: 114691, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060659

RESUMO

The broad-spectrum antineoplastic drug doxorubicin (DOX) has one of the most serious chronic side effects on the heart, dilated cardiomyopathy, but the precise molecular mechanisms underlying disease progression subsequent to long latency periods remain puzzling. Here, we established a model of DOX-induced dilated cardiomyopathy. In a cardiac cytology exploration, we found that differentially expressed genes in the KEGG signaling pathway enrichment provided a novel complex network of mTOR bridging autophagy and oxidative stress. Validation results showed that DOX caused intracellular reactive oxygen species accumulation in cardiomyocytes, disrupted mitochondria, led to imbalanced intracellular energy metabolism, and triggered cardiomyocyte apoptosis. Apoptosis showed a negative correlation with DOX-regulated cardiomyocyte autophagy. To evaluate whether the inhibition of mTOR could upregulate autophagy to protect cardiomyocytes, we used rapamycin to restore autophagy depressed by DOX. Rapamycin increased cardiomyocyte survival by easing the autophagic flux blocked by DOX. In addition, rapamycin reduced oxidative stress, prevented mitochondrial damage, and restored energy metabolic homeostasis in DOX-treated cardiomyocytes. In vivo, we used metformin (Met) which is an AMPK activator to protect cardiac tissue to alleviate DOX-induced dilated cardiomyopathy. In this study, Met significantly attenuated the oxidative stress response of myocardial tissue caused by DOX and activated cardiomyocyte autophagy to maintain cardiomyocyte energy metabolism and reduce cardiomyocyte apoptosis by downregulating mTOR activity. Overall, our study revealed the role of autophagy and apoptosis in DOX-induced dilated cardiomyopathy and demonstrated the potential role of regulation of the AMPK/mTOR axis in the treatment of DOX-induced dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Doxorrubicina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Miócitos Cardíacos , Apoptose , Autofagia , Estresse Oxidativo , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...