Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(5): e0193923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754562

RESUMO

IMPORTANCE: Although most bacteria are quickly killed after phagocytosis by a eukaryotic cell, some pathogenic bacteria escape death after phagocytosis. Pathogenic Mycobacterium species secrete polyP, and the polyP is necessary for the bacteria to prevent their killing after phagocytosis. Conversely, exogenous polyP prevents the killing of ingested bacteria that are normally killed after phagocytosis by human macrophages and the eukaryotic microbe Dictyostelium discoideum. This suggests the possibility that in these cells, a signal transduction pathway is used to sense polyP and prevent killing of ingested bacteria. In this report, we identify key components of the polyP signal transduction pathway in D. discoideum. In cells lacking these components, polyP is unable to inhibit killing of ingested bacteria. The pathway components have orthologs in human cells, and an exciting possibility is that pharmacologically blocking this pathway in human macrophages would cause them to kill ingested pathogens such as Mycobacterium tuberculosis.


Assuntos
Dictyostelium , Polifosfatos , Humanos , Polifosfatos/metabolismo , Difosfatos/metabolismo , Dictyostelium/microbiologia , Bactérias/metabolismo , Fagocitose , Serina-Treonina Quinases TOR
2.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982997

RESUMO

Dictyostelium discoideum is a soil-dwelling unicellular eukaryote that accumulates extracellular polyphosphate (polyP). At high cell densities, when the cells are about to overgrow their food supply and starve, the corresponding high extracellular concentrations of polyP allow the cells to preemptively anticipate starvation, inhibit proliferation, and prime themselves to begin development. In this report, we show that starved D. discoideum cells accumulate cell surface and extracellular polyP. Starvation reduces macropinocytosis, exocytosis, and phagocytosis, and we find that these effects require the G protein-coupled polyP receptor (GrlD) and two enzymes, Polyphosphate kinase 1 (Ppk1), which is required for synthesizing intracellular polyP, cell surface polyP, and some of the extracellular polyP, and Inositol hexakisphosphate kinase (I6kA), which is required for cell surface polyP and polyP binding to cells, and some of the extracellular polyP. PolyP reduces membrane fluidity, and we find that starvation reduces membrane fluidity; this effect requires GrlD and Ppk1, but not I6kA. Together, these data suggest that in starved cells, extracellular polyP decreases membrane fluidity, possibly as a protective measure. In the starved cells, sensing polyP appears to decrease energy expenditure from ingestion, and decrease exocytosis, and to both decrease energy expenditures and retain nutrients.


Assuntos
Dictyostelium , Dictyostelium/metabolismo , Polifosfatos/farmacologia , Polifosfatos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fagocitose , Exocitose
3.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824815

RESUMO

Dictyostelium discoideum is a soil-dwelling unicellular eukaryote that accumulates extracellular polyphosphate (polyP). At high cell densities, when the cells are about to overgrow their food supply and starve, the corresponding high extracellular concentrations of polyP allow the cells to preemptively anticipate starvation, inhibit proliferation, and prime themselves to begin development. In this report, we show that starved D. discoideum cells accumulate cell surface and extracellular polyP. Starvation reduces macropinocytosis, exocytosis, and phagocytosis, and we find that these effects require the G protein-coupled polyP receptor (GrlD) and two enzymes, Polyphosphate kinase 1 (Ppk1), which is required for synthesizing intracellular polyP, cell surface polyP, and some of the extracellular polyP, and Inositol hexakisphosphate kinase (I6kA), which is required for cell surface polyP and polyP binding to cells, and some of the extracellular polyP. PolyP reduces membrane fluidity, and we find that starvation reduces membrane fluidity, and this effect requires GrlD and Ppk1 but not I6kA. Together, these data suggest that in starved cells, extracellular polyP decreases membrane fluidity, possibly as a protective measure. In the starved cells, sensing polyP appears to decrease energy expenditure from ingestion, and decrease exocytosis, to both decrease energy expenditures and retain nutrients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...